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We apply periodic orbit theory to a two-dimensional nonintegrable billiard system whose boundary is varied
smoothly from a circular to an equilateral triangular shape. Although the classical dynamics becomes chaotic
with increasing triangular deformation, it exhibits an astonishingly pronounced shell effect on its way through
the shape transition. A semiclassical analysis reveals that this shell effect emerges from a codimension-2
bifurcation of the triangular periodic orbit. Gutzwiller’s semiclassical trace formula, using a global uniform
approximation for the bifurcation of the triangular orbit and including the contributions of the other isolated
orbits, describes very well the coarse-grained quantum-mechanical level density of this system. We also discuss
the role of discrete symmetry for the large shell effect obtained here.
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I. INTRODUCTION

The periodic orbit theory �POT� is a very useful tool to
study shell structure in single-particle energy spectra. In
POT, the quantum-mechanical level density is semiclassi-
cally approximated in terms of the periodic orbits of the
corresponding classical system. For systems with only iso-
lated orbits, Gutzwiller derived the so-called “trace formula”
�1� which is particularly successful for chaotic systems. The
POT for three-dimensional �3D� cavities was developed in
�2�. In integrable systems, semiclassical trace formulas can
be derived from torus quantization �3,4�. However, most
physical systems lie between the above two extreme situa-
tions; i.e., they exhibit mixed phase-space dynamics in
which both regular and chaotic motion coexist on the same
energy shell. For systems with various types of continuous
symmetries, trace formulas have been derived in �4–6�.
For an introductory textbook on semiclassical physics
and applications of the POT to various physical systems, we
refer to �7�.

In both integrable and mixed systems, bifurcations of
periodic orbits can significantly influence the shell struc-
ture. The above-mentioned semiclassical trace formulas,
which are all based on the stationary-phase approximation
�SPA�, diverge when bifurcations of periodic orbits occur
under variations of energy or potential parameters �e.g.,
deformations�. In the SPA, the classical action integral is
expanded around its stationary points �corresponding to pe-
riodic orbits� up to quadratic terms and the trace integral is
evaluated in terms of Gauss-Fresnel integrals. At bifurcation
points, the determinant of the coefficient matrix of the qua-
dratic terms becomes zero and the Gauss-Fresnel integral
becomes singular. In order to obtain a finite semiclassical
level density near bifurcation points, higher-order expansion
terms of the action integral are needed, which are most con-
veniently found from the normal forms appropriate to the
types of bifurcation under consideration �8–10�.

Quantum billiards �and their 3D versions, cavities�, be-
sides being quite useful toy models to study POT, reflect
important features of finite physical quantum systems such
as quantum dots, metallic clusters, and atomic nuclei. E.g.,
nonintegrable 3D cavities with realistic shapes appropriate
for fission barriers of actinide nuclei have been used in
POT to explain the onset of the mass asymmetry of nascent
fission fragments �11�. On the other hand, many integrable
billiard systems are well known and fully understood
semiclassically—e.g., circular, equilateral triangular, square,
and elliptic billiards �cf. �7��—and may be used as simple
models for physical systems. In these, bifurcations of short
periodic orbits may lead to a considerable enhancement of
shell effects. E.g., in the elliptic billiard, the short diametric
orbit undergoes successive bifurcations with increasing de-
formation, and new periodic-orbit families emerge �9,12,13�.
The same type of bifurcations occur for equatorial orbits in
the 3D spheroidal cavity �14� and provide a schematic expla-
nation of nuclear superdeformed and hyperdeformed shell
structure �15,16�. In these studies, it was shown that a system
may turn strongly chaotic by adding small reflection-
asymmetric �e.g., octupole� deformations �17�.

In this paper, we apply the POT to a two-dimensional
nonintegrable billiard system whose boundary is continu-
ously varied from a circular to an equilateral triangular
shape. This study is initiated to explore a possible quantum
dot system. Many studies have been undertaken for quantum
dots, but this type of deformation has not been studied be-
fore. Another important aim is to investigate the role of dis-
crete symmetries. As will be discussed, the present model
possesses discrete C3v point-group symmetry. Recently, sev-
eral mean-field studies of nuclei have suggested the possible
existence of low-lying states with exotic shapes with point-
group symmetries, such as tetrahedral and octahedral defor-
mations �18�. In order for such shapes to be stabilized, rather
large quantum shell effects in the single-particle spectra are
necessary. We will discuss the role of discrete symmetries in
establishing strong shell effects.
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II. SHELL STRUCTURE AND LEVEL STATISTICS

A. Model system

We consider the two-dimensional billiard system

H =
p2

2m
+ V�r�, V�r� = �0, r � R��� ,

� , r � R��� ,
� �2.1�

in polar coordinates r= �r ,��, whereby the boundary shape
R��� is parametrized implicitly by the equation

R2 +
2�3�

9

R3

R0
cos�3�� = R0

2, � � �0,2�� . �2.2�

Figure 1 shows the shape of the boundary for several values
of �. This system possesses the discrete symmetries of the
point group C3v, consisting of �2� /3 rotations about the
origin and reflections with respect to the three axes through
the origin with �=0, �� /3. The deformation parameter �
=0 yields a circular shape and �=1 an equilateral triangle.
The system is integrable in these two limits, but noninte-
grable in between.

For the calculation of the quantum spectrum of this sys-
tem, it is useful to decompose the wave functions into free
circular waves:

�k�r,�� = �
m=−�

�

cmJ	m	�kr�eim�, �2.3�

where k=�2me /	 is the wave number and e the energy.
Taking the C3v symmetry into account, we can classify the

eigenstates according to the eigenvalues of the symmetry
operators

R��
�� = e2�i
/3��
��, �2.4a�

P��
�� = �− 1����
��, �2.4b�

where R and P represent rotation by 2� /3 around the origin
and reflection with respect to the x axis, respectively. We
have simultaneous eigenstates of R and P for 
=0 states,
and then we can classify the eigenstates into four sets, which

correspond to the irreducible representations �“irreps”� of the
C3v point group �19�:

�k
�0+��r,�� = �

m=0

�

cm
�0+�J3m�kr�cos�3m�� , �2.5a�

�k
�0−��r,�� = �

m=1

�

cm
�0−�J3m�kr�sin�3m�� , �2.5b�

�k
��1��r,�� = �

m=−�

�

cm
��1�J	3m�1	�kr�ei�3m�1��. �2.5c�

�k
�+1� are the complex conjugates of �k

�−1�, and the two form
degenerate pairs of states. �The point group C3v has two
1-dimensional irreps and one 2-dimensional irrep. The states
�0�� correspond to the 1-dimensional irreps, and the degen-
erate pairs of states ��1� correspond to the 2-dimensional
irrep.� Taking linear combinations of these, one finds the
following alternative real expressions for the states �2.5c�:

�k
�1���r,�� = �

m=−�

�

cm
�1��J	3m+1	�kr��cos��3m + 1���

sin��3m + 1��� � ,

�2.5c��

which are not eigenstates of the operator R, but of the op-
erator P. The eigenvalue spectrum 
kn� and the coefficients
cm are determined by the Dirichlet boundary condition
�kn

�R ,��=0. We show some eigenfunctions in Fig. 2. The
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FIG. 1. Shapes of the boundary given by Eq. �2.2� for several
values of deformation parameter �.
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FIG. 2. Wave functions of some lowest eigenstates for �=0.4.
0+, 0−, and 1� are states of type �2.5a�, �2.5b�, and �2.5c��, respec-
tively. Their k values are also indicated.
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states belonging to the sets �2.5a� and �2.5b� have symmetry
under the rotation R. The former are even under the reflec-
tion P, while the latter are odd.

Figure 3 shows the lower part of the energy spectrum

en�= 
	2kn

2 /2m�, plotted against the deformation parameter
�. We note that the levels bunch into small energy intervals
in the region ��0.5–0.7, forming large gaps in the spec-
trum. It is, in fact, quite surprising to realize that the shell
gaps in this nonintegrable region are much larger than in the
two integrable limits �=0 and �=1. The gaps cause large
shell effects in the total energy of a system of N noninteract-
ing fermions described by the Hamiltonian �2.1�. We split the
energy into a smooth and an oscillating part

E�N� = 2�
n=1

N/2

en = Ē�N� + �E�N� �N even� , �2.6�

whereby the factor of 2 accounts for the spin s=1 /2. The

smooth part Ē�N� is equivalently given by a Strutinsky aver-
aging �20�, the extended Thomas-Fermi model, or the Weyl
expansion �cf �7�, Chap. 4�, while the shell-correction energy
�E�N� reflects the quantum effects; it is dominated by the
shortest periodic orbits of the classical system as demon-
strated below for the case of the level density. Large gaps in
the spectrum lead to large amplitudes of �E�N�. This is dem-
onstrated in Fig. 4 where we present �E�N�, scaled by a
factor �N, for three values of �. We note that the oscillatory
pattern for �=0.5 is quite regular and on the average has a
much larger amplitude than in the integrable limits.

B. Level statistics

Nearest-neighbor spacing �NNS� distributions are com-
monly used to identify signatures of chaos in a quantum

system. Generically, classically chaotic systems exhibit level
repulsion and the NNS distributions are of Wigner type,
while regular systems typically have degeneracies and the
NNS distributions are Poisson like �21�. To extract these uni-
versal fluctuation properties, one has to use unfolded spectra
whose mean level density is normalized to unity. Thus, for
systems with discrete symmetries, one has to study the NNS
of the subsets of levels belonging to the irreps of the corre-
sponding point group.

The average total level density of a two-dimensional bil-
liard is given by Weyl’s asymptotic formula �22�

ḡ�e� 

m

2�	2A + O�e−1/2� , �2.7�

in which the leading-order term is proportional to the area A
surrounded by the boundary and does not depend on the
energy. This means that for large energies e the mean level

spacing 
̄ becomes asymptotically constant:


̄ → 
̄0 =
1

ḡ



2�	2

mA
. �2.8�

As discussed in the previous subsection, the quantum levels
of our system fall into four sets 
en

�� with �=0� and �1,
corresponding to the eigenstates �2.5a�, �2.5b�, and �2.5c� or
�2.5c��, respectively. The numbers of levels in these sets have
the relative ratios

N�0+�:N�0−�:N�+1�:N�−1� = 1:1:2:2,

and hence the mean level spacing in each set is given by


̄�0�� = 6
̄0, 
̄��1� = 3
̄0. �2.9�

The unfolded level spacings are then obtained by

sn
��� =

en+1
��� − en

���


̄���
�� = 0 � , � 1� . �2.10�

Figure 5 shows the NNS distributions P�s�, averaged over all
four sets. At �=0, the system is integrable and the distribu-
tion is Poisson-like as expected. At �=0.3, the distribution
changes into Wigner form. A similar situation is also found at
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FIG. 3. Lowest part of the energy spectrum �in units of
	2 /mR0

2�, plotted against the deformation parameter �.
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�=0.7. At �=0.5, however, the distribution deviates consid-
erably from the Wigner form and becomes closer to a Pois-
son distribution. For mixed systems, the NNS distributions
P�s� are often fitted by a Brody distribution �23�

B�s,�� = ��� + 1�s� exp�− �s�+1�, � = ���� + 2

� + 1
���+1

,

�2.11�

which interpolates between the Poisson ��=0� and Wigner
��=1� distributions. The Brody parameter � can then be
taken as a measure for the chaoticity of the NNS distribution.
In Fig. 6 we show � as obtained by fitting the P�s� distribu-
tions of Fig. 5 to �2.11�. We clearly recognize two peaks
around ��0.3 and �0.7, exhibiting near-chaoticity, sepa-
rated by a deep minimum around ��0.5 where the system
appears to approach regularity. As we will discuss below, this
near-regularity is related to an approximate restoration of
local dynamical symmetry due to a periodic-orbit bifurca-
tion.

III. FOURIER ANALYSIS AND CLASSICAL
PERIODIC ORBITS

In the POT, the quantum level density g�e� is approxi-
mated in terms of classical periodic orbits by the semiclassi-
cal trace formula �1–6�

g�e� = �
n

��e − en� � ḡ�e� + �
�

A��e�cos�S��e�
	

−
�

2
��� ,

�3.1�

where the first term, like for the energy in �2.6�, represents
the smooth part, while the second term contains the quantum
shell effects. In the latter, the sum is taken over all periodic
orbits � of the classical system �or the orbit families � in
systems with continuous symmetries �3–5��, S� is the action
integral around �, and �� is the Maslov index �24,25�. The
amplitude A� depends on the stability of the orbit � �and, for
an orbit family, on the phase-space volume covered by the
family�. For isolated orbits, the amplitude A� was given by
Gutzwiller �1�:

A��e� =
1

�	

T��e�
�	det�1 − M��e��	

, �3.2�

where T��e�=dS��e� /de is the period of the orbit and M��e�
its stability matrix defined below. If an orbit has a discrete
degeneracy f �i.e., if there exist f replicas with identical ac-
tions, stabilities, and Maslov indices, but different orienta-
tions� due to discrete symmetries, it has to be included f
times into the sum in �3.1�. This holds also for time-reversed
rotational orbits.

Transforming variables from energy e to wave number k
and using the relation S�=	kL� for billiards, where L� is the
length of the orbit �, the trace formula becomes

g�k� =
	2k

m
g�e� � ḡ�k� + �

�

A��k�cos�kL� −
�

2
��� .

�3.3�

Let us now consider the Fourier transform of the level den-
sity g�k� with respect to k:

F�L� = �
−�

�

g�k�e−ikLe−�k
�2/2dk . �3.4�

The Gaussian damping factor is included for the truncation
of the high-energy part of the spectrum. If we insert Eq. �3.3�
and ignore the k dependence of the amplitude factors A�

�which are constant for isolated orbits in billiards and cavi-
ties�, we obtain

Fsc�L� = F0�L� + ��
�

e−i���/2A��
�L − L�� . �3.5�

�
�x� is a normalized Gaussian of width 
, which turns into
Dirac’s delta function in the limit 
→0. Equation �3.5� in-
dicates that the Fourier transform F�L� is a function with
successive peaks at the lengths of the periodic orbits L=L�,
with heights proportional to the amplitudes A�. We can there-
fore extract information about the classical periodic orbits
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FIG. 5. Nearest-neighbor spacing distribution P�s� for four val-
ues of the deformation parameter �. The lowest 600 levels �i.e., 100
and 200 levels of the subsets 0� and �1, respectively� were used
to obtain the statistics. Solid and dashed lines show Poisson and
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from the Fourier transform of the quantum-mechanical level
density:

Fqm�L� = �
n

e−iknL−�kn
�2
, kn = �2men/	 . �3.6�

Figure 7 shows the modulus of this Fourier transform of our
system versus the deformation parameter �. At �=0, where
the periodic orbits form degenerate families corresponding to
rational tori, we find the peaks at the well-known orbit
lengths of the circular billiard �2�:

Lvw = 2vR0 sin�w�/v� . �3.7�

Here w and v are the winding number around the origin and
the number of vertices �v�2w� of each orbit, respectively.
For instance, L=4R0 for the diametric orbit �w=1,v=2�, L
=3�3R0 for the triangular orbit �w=1,v=3�, L=4�2R0 for
the square orbit �w=1,v=4�, and so on. With increasing �,
we observe a dramatic enhancement of the peak height cor-
responding to the triangular orbit, L�5.2R0 �and its second
repetition L�10.4�, starting around ��0.4 and culminating
around ��0.55. As we shall see below, this can be traced
back to a codimension-2 bifurcation of the triangular orbit.

In fact, for ��0 all rational tori of the circular billiard are
broken into pairs of stable and unstable isolated orbits. With
increasing �, bifurcations of the stable orbits occur and new
periodic orbits emerge, which makes the phase-space in-
creasingly chaotic. In the following, we first demonstrate this
for the two shortest orbits and then focus on the triangular
orbit.

The stability of a periodic orbit is described by the stabil-
ity matrix M�, which is defined by the linearized Poincaré
map around the periodic orbit:

M� =
�„q�T��,p�T��…
�„q�0�,p�0�…

, �3.8�

where (q�t� ,p�t�) are the coordinates and momenta perpen-
dicular to the periodic orbit � as functions of time t, and T� is
the period of the orbit. In a two-dimensional autonomous
Hamiltonian system, M� is a symplectic �2�2� matrix and
the stability of a orbit is easily identified by looking at its

trace Tr M�. For elliptic �stable� orbits, the eigenvalues of M�

are of the form �eiv ,e−iv� with real v�0, and thus −2
�Tr M��2. For direct- and inverse-hyperbolic �unstable�
orbits, the eigenvalues are �eu ,e−u� and �−eu ,−e−u�, respec-
tively, with real u�0, and hence Tr M��2 and Tr M��−2.
Bifurcations of isolated orbits occur whenever Tr M�= +2.

Figures 8 and 9 show Tr M���� for the two shortest pairs
of periodic orbits in our system. In Fig. 8, the stable branch
�2A� of the diametric orbit is seen to undergo a period-
doubling pitchfork bifurcation at �=0.166, where a symmet-
ric wedge-shaped orbit �4V� emerges. The latter undergoes a
further pitchfork bifurcation at �=0.227, where a pair of
asymmetric wedge-shaped orbits �4U� emerges.
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FIG. 7. Modulus 	Fqm�L�	 of Fourier transform of the quantum-
mechanical level density versus deformation parameter �.
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upper panel plotted versus ��. The lower panel shows a magnifi-
cation around the bifurcation of the stable orbit 3A occurring near
��0.407.

ANOMALOUS SHELL EFFECT IN THE TRANSITION FROM… PHYSICAL REVIEW E 77, 056211 �2008�

056211-5



The bifurcation scenario of the triangular orbits is more
complicated. In the upper panel of Fig. 9, where Tr M� is
plotted against ��, the stable triangular orbit 3A is seen to
touch the critical line Tr M�= +2 near ���0.63 ���0.4�
and to remain stable on either side. A pair of new stable 3D
and unstable 3C triangular orbits emerge from the touching
point. A magnification of the situation around ��0.4, shown
in the lower panel against �, reveals that the scenario con-
sists of two connected near-lying bifurcations, also called a
“codimension-2 bifurcation.” At �=0.400, a tangent �saddle-
node� bifurcation occurs, at which the new orbits 3D and 3C
are born. Shortly after this bifurcation, the �old� stable orbit
3A and the new unstable orbit 3C encounter in a touch-
and-go bifurcation at �=0.407 �see Appendix A for its ana-
lytic value�. Note that the new 3C and 3D orbits do not
possess C3v symmetry, in contrast to the old 3A orbit, so that
they occur in degenerate triplets obtained by successive ro-
tations about 2� /3; i.e., these orbits have a discrete degen-
eracy of f =3.

Figure 10 shows excerpts of Poincaré surfaces of section
�� ,�� in the relevant regions. Here � is the polar angle of a
reflection point of an orbit at the boundary, while � repre-
sents the reflection angle measured from the normal to the
boundary at the reflection point. The three upper panels il-
lustrate the tangent bifurcation of the 3C and 3D orbits. For
�=0.390 �upper left�, one sees one major regular island cor-
responding to the stable equilateral triangular orbit 3A. It

contains its fixed point at �� ,��= �0,� /6�, surrounded by
quasitori �small aperiodic perturbations of the 3A orbit�. At
the bifurcation point ��0.400 �upper center�, three cusps
are formed by one of the surrounding quasitori in the island,
and for �=0.401 �upper right�, the three stable fixed points
of the new 3D orbits, surrounded by small regular islands,
are seen to have emerged from each of the three cusps in the
major island. The three saddles separating these three islands
from the central island contain the unstable fixed points of
the 3C orbits. The stable fixed point of the 3A orbit still
persists at the original position at the center of the major
island. The number f =3 of the new stable and unstable fixed
points in the island is due to the threefold discrete degen-
eracy of the orbits 3D and 3C mentioned above.

The lower three panels in Fig. 10 illustrate the touch-
and-go bifurcation of the orbits 3A and 3C. At the bifurcation
point �=0.407 �lower left�, the three unstable fixed points of
the 3C orbits have contracted into a starlike intersection of
three quasitori, located at the central fixed point �� ,��
= �0,� /6� of the 3A orbit. The three nearby stable fixed
points in the major island belong to the 3D orbit. For �
=0.420 �lower center�, small stable islands have formed
again around the fixed points of the 3A orbit, and nearby we
recognize the three unstable fixed points of the 3C orbit. For
�=0.500 �lower right�, the central island of the 3A orbits has
grown, the three islands of the stable 3D orbits have shrunk,
and the three unstable fixed points of the 3C orbits are about
to be buried in the increasing chaotic structure.
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upper left of each panel� in the bifurcation region of the triangular orbit 3A. � is the polar angle of a reflection point and � the reflection angle
measured from the normal to the boundary; the set �� , sin �� is approximately area preserving.
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The bifurcation of the triangular orbit 3A occurs at the
deformation where we observed the onset of the large Fou-
rier peak in Fig. 7. It is due to the appearance of the pair of
sixfold-degenerate new 3D and 3C orbits. In particular, the
stable one 3D, besides the doubly degenerate 3A orbit, adds
to the local regularity of the phase space observed in Figs. 5,
7, and 10. It is therefore apparent that this bifurcation is
responsible for the remarkable shell structure in the quantum
spectrum seen in Fig. 3. Note that the maximum of the Fou-
rier peak in Fig. 7 occurs at ��0.55—i.e., above the bifur-
cation where the new orbits are born. The fact that the sig-
nature of a bifurcation is strongest after the bifurcation point
�on the side where the new orbits exist� is a rather general
trend for shell effects which can also be understood in terms
of semiclassical uniform approximations �9,10� �see the fol-
lowing section and Fig. 12 below�. It has also been observed
recently in the level statistics of a Hamiltonian system with
mixed phase space �26�.

IV. SEMICLASSICAL ANALYSIS

A. Semiclassical level density near bifurcations

As mentioned above, the Gutzwiller trace formula �3.1�
with the amplitudes �3.2� for isolated orbits diverges at bi-
furcation points. This is due to the breakdown of the
stationary-phase approximation, and higher-order terms in
the expansion of the action integral must be included in the
derivation of the trace formula. For this purpose, it is neces-
sary �8� to express the trace integral in phase space. After
integrating over the coordinate and momentum parallel to an
isolated orbit � in a two-dimensional system, its semiclassi-
cal contribution to the oscillating part of the level density
becomes �4,10,16�

�g��e� =
1

2�2	2Re�
−�

�

dq��
−�

�

dp
1

nr

� Ŝ

�e
� �2Ŝ

�p � q�
�1/2

�exp� i

	
Ŝ�q�,p� −

i

	
q�p −

i�

2
��� . �4.1�

Here q� is the final coordinate and p the initial momentum
perpendicular to the orbit �, the two forming a canonical pair
of variables �q� , p� to describe the “natural” Poincaré surface
of section �PSS� of the orbit on which �q� , p�= �0,0� is its
fixed point. For generic bifurcations, nr is the repetition num-

ber of the primitive orbit. The function Ŝ�q� , p� denotes the
Legendre transform of S�q� ,q�:

Ŝ�q�,p� = S�q�,q� + q p , �4.2�

where S�q� ,q� is the �open� action integral along the orbit �
�at fixed energy e�,

S�r�,r� = �
r

r�
p��r�� · dr�, �4.3�

projected onto the q axis. The function Ŝ�q� , p� is actually
the generating function of the Poincaré map:

Ŝ�q�,p�: �q,p� → �q�,p�� . �4.4�

If one expands the function ��q� , p�= Ŝ�q� , p�−q�p in the
phase of the integrand of �4.1� around q�= p=0 up to qua-
dratic terms in q� and p and evaluates the integrals in �4.1�
by the standard SPA, one obtains the contribution of the orbit
� to Gutzwiller’s trace formula �3.1� with the amplitude
�3.2�. Near bifurcations of the orbit �, the SPA breaks down
and one has to include higher-order terms in the expansion of
��q� , p�. The minimum number of terms needed to describe
a given bifurcation scenario on the PSS leads to the so-called
“normal forms” of ��q� , p�, which depend on the type of
bifurcation. Doing the integrations in �4.1� using such nor-
mal forms leads to a finite combined contribution of the orbit
� and all the orbits involved in its bifurcation to the trace
formula. In order to conform with standard notation, we re-
name the function ��q� , p� as S�q� , p� which, according to
�4.2�, is identical with the projected action integral S�q� ,q�,
but taken as a function of the variables q� and p.

B. Normal form for codimension-2 bifurcation

For the description of the codimension-2 bifurcation sce-
nario of the orbit 3A and its satellites 3C and 3D discussed in
the previous section and illustrated on the PSS in Fig. 10, the
following normal form is appropriate �27�:

S�I,�� = S0��� − �I − aI3/2 cos�3�� − bI2. �4.5�

Here one has transformed the Poincaré variables �q� , p� to
quasipolar variables �I ,�� by

p = �2Icos �, q� = �2Isin � . �4.6�

In �4.5�, S0��� is the �closed� action integral of the central 3A
orbit as a function of �. The “bifurcation parameter” � is a
monotonously decreasing function of � such that �=0 at the
touch-and-go bifurcation point �here �=�0=0.407� of the
central orbit and that ��0 for ���0. a and b are parameters
which are specific for the system and will be determined
below.

That �4.5� is able to describe the correct fixed-point struc-
ture not only of the 3A orbit, but also of its satellites 3C and
3D, will now be shown explicitly. We first rewrite �4.5� in
terms of q� and p:

S�q�,p� = S0 −
�

2
�p2 + q�2� −

a
�8

�p3 − 3pq�2� −
b

4
�p2 + q�2�2.

�4.7�

The stationary-phase conditions are

� �S

�q�
�

qi

= 0, � �S

�p
�

pi

= 0. �4.8�

One of the solutions is q0=0 and p0=0 and corresponds to
the central 3A orbit. This is so by default, due to the choice
of the Poincaré variables �q , p�. Two further stationary points
are found to be
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q1,2 = 0, p1,2 = −
3a

4�2b
�� 9a2

32b2 −
�

b
. �4.9�

The fixed points �qi , pi� with i=1,2 belong to the satellite
orbits 3C and 3D respectively. Two more pairs of fixed
points for each of them are found by rotations in the �I ,��
plane: �→��2� /3. �1=9a2 /32b is the critical value for
p1,2 to have real values—i.e., for the real orbits 3C and 3D to
exist. For our system we can choose b�0, and therefore �1
�0. For ���1, the 3C and 3D orbits become imaginary and
only the central orbit 3A is real. With decreasing �, the three
pairs of stable and unstable satellite orbits appear at �=�1,
which we identify with the tangent bifurcation point. At �
=0 we have the touch-and-go bifurcation as stated above.
For ��0 ����0�, all orbits are real.

The normal-form parameters �, a, and b can be deter-
mined by fitting the actions S and stability traces Tr M of the
orbits, which have been obtained numerically, to their local
behaviors predicted by the normal form �4.5�. The stability

trace is given in terms of Ŝ by �10�

Tr M = � �2Ŝ

�p � q�
�−1�1 + � �2Ŝ

�p � q�
�2

−
�2Ŝ

�p2

�2Ŝ

�q�2� .

�4.10�

For the central orbit, it becomes

Tr M0 = Tr MA = 2 − �2, �4.11�

so that � can be determined as �= ��2−Tr MA, choosing the
correct sign on either side of the bifurcation. The other pa-
rameters are obtained from the action difference of the sat-
ellite orbits 1 and 2 �i.e., 3C and 3D�. Inserting �q1,2 , p1,2�
from �4.9� into �4.7�, one finds

SD − SC

	kR0
=

4

3b
��1�� − �1�3/2. �4.12�

By fitting the numerical data for SD−SC as function of �, we
obtain �1 and b, and therefore a. Thus we can uniquely de-
termine all the normal form parameters. The results for the
triangular orbits discussed above are

a =
0.519252
�	kR0

, b =
2.34950

	kR0
, �1 = 0.0322755.

�4.13�

The formulas for the stability traces for the 3C and 3D orbits
are

Tr MC,D = 2 � 12��1
3��1 − �� − 24�1��1 − ��

� 12��1��1 − ��3, �4.14�

and the action difference between the 3C and 3A orbits is

SC − SA

	kR0
=

1

12b
�3�2 − 12�1� + 8�1

2 − 8��1��1 − ��3� .

�4.15�

We have checked that the numerical results in the neighbor-
hood of the bifurcations are nicely reproduced by these equa-
tions.

C. Uniform approximations

Inserting the normal form �4.5� into the integral �4.1�, one
obtains a “local” uniform approximation �8� which is finite
and valid near the bifurcation—i.e., for not too large absolute
values of �. Due to the C3v symmetry of our system, the
touch-and-go bifurcation is nongeneric and isochronous. The
factor nr in the denominator of �4.1� here must be chosen
�28� as nr= f =3. We have another degeneracy factor of 2 in
the numerator due to the time-reversal symmetry of all or-
bits. Using the variables �I ,�� and changing the energy e to
the wave number k, we finally obtain the following expres-
sion for the local uniform approximation, in which the inte-
gration over � can be done analytically:

�g��k� =
1

3�2	
Re�

0

�

dI�
0

2�

d� L�� �2Ŝ

�I � �
�1/2

exp� i

	

S0 − I�

− �I − aI3/2 cos�3�� − bI2� −
i�

2
���

=
2L�

3�	
Re eikL�−i���/2�

0

�

dI J0� a

	
I3/2�e�i/	��−�I−bI2�.

�4.16�

The integration over I can be performed numerically using
an expansion formula given in �27�.

As stated above, the result �4.16� is only useful in the
neighborhood of the bifurcation. Far away from it, where all
orbits involved become isolated, it can be evaluated asymp-
totically �corresponding to the SPA�, but the amplitudes of
the orbits then do not agree with the Gutzwiller values �3.2�.
In order to achieve this, one must develop “global” uniform
approximations �9,10�. To that purpose, one needs to include
higher-order expansion terms in the normal form. For the
codimension-2 bifurcation of our type one obtains, after suit-
able coordinate transformations �29�,

�g��k� =
1

3�2	
Re�

0

�

dI�
0

2�

d� ��I,��exp� i

	

S0 − I� − �I

− aI3/2 cos�3�� − bI2� −
i�

2
��� , �4.17�

with

��I,�� = L� − �I − �I3/2 cos�3�� , �4.18�

where � and � are expressed by a certain combination of
higher-order expansion coefficients. In practice, these param-
eters are determined such that �4.17� yields the sum of con-
tributions with amplitudes �3.2� of all involved isolated or-

KEN-ICHIRO ARITA AND MATTHIAS BRACK PHYSICAL REVIEW E 77, 056211 �2008�

056211-8



bits far away from the bifurcation point. They are determined
by equating �cf. �30��

LC

�	2 − Tr MC	
=

LA − �IC − �IC
3/2

�	det ���IC�	
, �4.19�

LD

�	2 − Tr MD	
=

LA − �ID − �ID
3/2

�	det ���ID�	
, �4.20�

with

det �� = �
�2S

��2

�2S

�� � I

�2S

�I � �

�2S

�I2
�

�=0

= �
�2S

�q�2

�2S

�q� � p

�2S

�p � q�

�2S

�p2
�

q�=0

�4.21�

and

IC,D =
1

2
�q1,2

2 + p1,2
2 � . �4.22�

We now have all ingredients ready for calculating the semi-
classical level density of our system. Since it is well known
�1� that the sum over all periodic orbits does not converge in
systems with mixed dynamics, we have to introduce a certain
truncation. This is achieved �7,31� by focusing on the gross-
shell structure of the level density, coarse-graining it by a
Gaussian convolution over k with width �:

g��k� =
1

���
� dk� e−��k� − k�/��2

g�k�� . �4.23�

The semiclassical trace formula �3.3� then becomes

g��k� � ḡ�k� + �
�

e−��L�/2�2
A��k�cos�kL� −

�

2
��� .

�4.24�

Due to the Gaussian factor, periodic orbits with lengths L�

�2� /� are now exponentially suppressed. Choosing �
=0.6, we need only consider periodic orbits with L��10R0.
From Fig. 8, we see that no isochronous bifurcations of the
diametric orbit occur for ��0, so that its contribution can be
evaluated by the standard Gutzwiller formula with ampli-
tudes �3.2�. A period-doubling bifurcation of the stable diam-

eter occurs at ��0.15, but does not contribute much to the
coarse-grained level density. The same is true for the tetrag-
onal and pentagonal orbits. The contributions of the triangu-
lar orbit 3A and its satellites 3C and 3D are included in the
global uniform approximation �4.17�, including the Gaussian
damping factor exp�−��LA /2�2�.

The hexagonal orbit encounters also a codimension-2 bi-
furcation of the same type as the triangular orbit, as seen in
Fig. 11. Determining the normal-form parameters in the
same manner as above, we find the values

a =
14.0046
�	kR0

, b =
414.669

	kR0
, �4.25�

which are much larger than those for the triangular orbit
given in �4.13�. Since they contribute inversely to the local
uniform approximation �4.16�, this bifurcation has a much
less dramatic influence on the level density than that of the
triangular orbit. In order to demonstrate this more explicitly,
we plot in Figs. 12 and 13 the modulus of the integral

F��;a,b� = �
0

�

dI J0�aI3/2�ei�−�I−bI2� �4.26�

appearing in �4.16�. Figure 12 is for the parameters �4.13� of
the triangular and Fig. 13 for the parameters �4.25� of the
hexagonal orbits. We see that for larger a and b, this integral
has smaller values and is a more monotonous function of �.
For small a and b, however, it takes large values and exhibits
a considerable peak near the bifurcation point �=0. �Note
that the maximum actually occurs slightly after the
bifurcation—i.e., for −��0—as discussed at the end of Sec.
III.� This can be understood as follows. If the normal-form
parameters a and b are small, the action S does not depend
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FIG. 11. Same as Fig. 9 for the hexagonal orbits.
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much on I and �, and the quasiperiodic orbits around the
central orbit give a more coherent contribution to the inte-
gral, yielding a better restoration of local dynamical symme-
try around the central periodic orbit. Actually, the limit a
→0 is sufficient to locally restore integrability: the normal
form �4.5� then only depends on I and for b�0 describes the
bifurcation of a torus from an isolated orbit �cf. �32��.

This local dynamical symmetry is equivalent to a reso-
nance condition for quasitori winding around the bifurcating
periodic orbit over a rather wide region. The quantization of
these quasitori yields a number of quasidegenerate levels,
seen as the bunches in the spectrum of Fig. 3. This increases
the probability for small level spacings and renders the NNS
distribution more Poisson-like. The considerable changes in
the NNS distributions shown in Figs. 5 and 6 around �
=0.5 therefore account for the emergence of these quasireso-
nant tori.

In Fig. 14 we compare the oscillating part of the semiclas-
sical level density with that of the quantum-mechanical re-
sult. In the semiclassical calculation we have included the
primitive diametric, triangular, tetragonal, pentagonal, and
hexagonal orbits as explained above. We see that, besides the
rapid oscillations due to the average length of the shortest
orbits included �i.e., mainly of the short diameter orbit�, there
is a beating pattern that comes from the interferences be-
tween the different orbits. We note that both amplitudes and
phases are nicely reproduced in the semiclassical result for
all deformation parameters including the bifurcation points
��0.4. For �=0.5 and 0.6, the interference effects are re-
duced and the oscillating pattern is quite regular, indicating
the dominance of the bifurcating periodic orbits and the ac-
companying quasitori which have approximately the same
lengths. This is also seen in the shell-correction energy for
�=0.5 in Fig. 4, where the spacing 
N of the regular oscil-
lation corresponds to the length of the dominating triangular
orbit.

V. DISCUSSION OF DISCRETE SYMMETRIES

We conclude by some remarks on the role of discrete
symmetries. In the above model, the triangular periodic orbit
undergoes a bifurcation in the course of which a pair of
threefold-degenerate new orbits are created. �We only men-
tion the relative degeneracies here; all orbits have two extra
degeneracy factors of 2 due to reflections at the x axis and to
time reversal.� Stated more generally: the bifurcation brings
about new periodic orbits of reduced symmetry, which have
several degenerate replicas, connected with the symmetry
operations R and P in �2.3�, which give coherent contribu-
tions to the level density. This is one of the reasons why we
obtain a strong shell effect due to this bifurcation. If the C3
symmetry is slightly broken, the equilateral triangular orbit
will split into three nonequilateral triangular orbits with dif-
ferent lengths and different stabilities. They will give de-
structive contributions to the level density in most of the
parameter region. We would therefore expect that in billiards
with Cnv symmetry, the regular polygonal orbits with n re-
flections will play the most prominent role, such as the tri-
angular orbit in the present system.

This behavior can also be predicted from a perturbative
trace formula, developed by Creagh �33�, which describes
semiclassically the breaking of continuous symmetries. In
systems with continuous symmetries, the leading periodic
orbits occur in degenerate families corresponding to rational
tori. When a perturbation breaks the continuous symmetries,
the tori are broken into isolated orbits. For weak perturba-
tions, only those orbit families �tori� � are broken for which
the action change 
S� in lowest order of the classical pertur-
bation theory is nonzero. Furthermore, if the perturbed sys-
tem still has a discrete point symmetry, the orbit families
which have the same point symmetry are in resonance with
the perturbation and typically suffer the largest first-order
action change. In our billiard system �2.2�, we can treat the
deviation from the circular billiard, for sufficiently small val-
ues of �, as a perturbation that breaks the continuous U�1�
symmetry. For small �, the shape of the boundary is given by

R��� � R0�1 − � cos 3�� , �5.1�

and �=�3� /9 is the appropriate perturbation parameter. As
we show in Appendix B, the length of the periodic orbit
family �v ,w� is changed in first order of � only for v=3w;
i.e., only triangular orbits are affected in first-order perturba-
tion theory. The situation is similar in a spherical cavity per-
turbed by deformations with 2 j-pole deformations. For this
system it was shown explicitly �34� that the orbit families
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FIG. 14. Oscillating part of the coarse-grained level density.
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mechanical results, respectively.
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with a j-fold symmetry obtain the largest first-order action
changes. As a consequence of this symmetry-breaking argu-
ment, we understand that the orbits with the highest point
symmetry �namely, that of the perturbed system itself� are
those whose stability traces Tr M� deviate fastest from their
values Tr M�= +2 at �=0. Their stable branches therefore
are also the fastest to undergo a bifurcation.

We finally note that, quite generally, orbits with point
symmetries keep undergoing bifurcations whereby the new-
born orbits at each successive bifurcation lose one symmetry,
until the last stable branch has lost all symmetries. �We have
no formal proof for this statement, but have observed this
scenario in many Hamiltonian systems.� Hereby the stable
branches survive up to large deformations, giving large con-
tributions to the level density, while the unstable branches
rapidly turn chaotic and their contribution decreases expo-
nentially. In conclusion, orbits with high point symmetries
tend to give large contributions to the level density, even in
well-deformed systems, as long as they possess discrete sym-
metries.

To illustrate some of the above statements, let us consider
a billiard system with a different discrete symmetry. The
square billiard is integrable, and we can smoothly connect
square and circular billiards by parametrizing the boundary
shape R��� as

R2 −
�

8

R4�1 + cos 4�� − R0
4

R0
2 = R0

2. �5.2�

For small �, R��� is expressed by R����R0�1+� cos 4��
with �=� /16. This system obviously has C4v symmetry. �
=0 corresponds to the circle with radius R0, and �=1 corre-
sponds to the square with side length �7 /2R0. The system is
again integrable at these two limits, while it is nonintegrable
in between.

The square orbit here also has C4v symmetry, and it suf-
fers a nongeneric island-chain bifurcation at �=0.5, as seen
in the upper panel of Fig. 15 �see Appendix A for the ana-
lytical form of its stability matrix�. The pair of new-born
stable and unstable orbits have lost the C4v symmetry, but
still have a reflection symmetry at one axis; they are there-
fore doubly degenerate. The stable branch suffers a pitchfork
bifurcation at �
0.8, where it loses the last reflection sym-
metry. The diameter orbit �seen in the lower panel of Fig. 15�
has C2v symmetry; its second repetition suffers an island-
chain bifurcation at �=0.5, where a new pair of stable and
unstable branches are born. At this point, the stable branch
loses its time-reversal symmetry and keeps the C2v symme-
try. The orbit born at a pitchfork bifurcation near �
0.7
loses the reflection symmetry, but still keeps C2 symmetry. It
suffers a further pitchfork bifurcation near �
0.85, and the
orbit born there has lost all symmetries. The octagonal orbits
also show interesting bifurcation sequences in this system,
but their contributions to the level density are small com-
pared to those of the above ones. Other short orbits without
symmetries are already strongly chaotic at much smaller val-
ues of �.

Figure 16 shows the modulus of the Fourier transform
�3.6� of the quantum-mechanical level density of the

circular-to-square billiard �5.2�. The above bifurcations are
seen to play a significant role, although their effects are not
so drastic compared as for the circle-to-triangle billiard,
since the square and diameter orbits give destructive contri-
butions.

VI. SUMMARY AND CONCLUSIONS

We have used periodic orbit theory to analyze a strong
enhancement of shell effects in a nonintegrable billiard sys-
tem, which is closely connected to the bifurcation of a peri-
odic orbit with high point symmetry. The semiclassical trace
formula, including the bifurcating orbits in a global uniform
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FIG. 15. Trace of stability matrix for the square orbits �upper
panel� and the second repetition of the diametric orbits �lower
panel� in the circular-to-square billiard �5.2� with C4v symmetry.
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approximation and the other isolated orbits with their stan-
dard semiclassical Gutzwiller amplitudes, describes very
well the coarse-grained quantum level density of the system.
We have shown that the bifurcations play a significant role
especially when their normal-form parameters are small. Un-
der such a condition the quasiperiodic orbits around the bi-
furcating orbit give coherent contributions to the trace inte-
gral, which can be considered as an approximate local
symmetry restoration around the periodic orbit. It is accom-
panied by a relatively large regular region in the phase space
which persists around ��0.5 �cf. Fig. 10� and is reflected by
the level statistics �Figs. 5 and 6� and by large shell effects in
the spectrum �Fig. 3� and the shell-correction energy �Fig. 4�.

The role of the discrete symmetry is also important for
creating a large shell effect. The bifurcation of a highly sym-
metric orbit causes degenerate symmetry-reduced orbits
which give additional contributions to the level density.
Through successive bifurcations, at each of which one sym-
metry is lost by the new-born orbits, their stable branches
may survive up to rather large deformations until all symme-
tries are lost and all remaining branches become unstable
with exponentially decreasing contributions to the level den-
sity. This mechanism is operative in systems with arbitrary
point symmetries �such as Cnv discussed here�, in which pe-
riodic orbits of the same symmetries exist.
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APPENDIX A: ANALYTIC EXPRESSIONS FOR TRACES
OF STABILITY MATRICES

If the geometry of a periodic orbit in a billiard is analyti-
cally given, analytic expressions for its stability matrix are
often available as well. In billiard problems, the stability
matrix is constructed by alternating products of translation
and reflection matrices �see, e.g., Appendix B of �24��. For a
periodic orbit with v vertices, it becomes

M = Mref�v�Mtra�v,v − 1� ¯ Mref�1�Mtra�1,0� , �A1�

where Mref�i� stands for the matrix for reflection at the ith
vertex and Mtra�i+1, i� that for translation from the ith to the
�i+1�th vertex, respectively. They are given analytically by

Mtra�i + 1,i� = �1 Li+1,i/p
0 1

� , �A2�

Mref�i� = � − 1 0

2p/�i cos �i − 1
� , �A3�

where Li+1,i is the distance between the vertices i and i+1, p
the momentum, �i the curvature radius of the boundary at the
ith vertex, and �i the reflection angle measured from the
normal to the boundary at the ith vertex. For a boundary
R���, the curvature radius is given by

� =
�R2 + R�2�3/2

R2 + 2R�2 − RR�
, �A4�

where primes indicate derivatives with respect to �.
We first apply this to the equilateral triangular orbit 3A in

the billiard system �2.2�. Its vertices are located at �
=0, �2� /3, and the curvature radius at these points is

� =
�3 − �2��
2�4�2 − 3�

R0, �A5�

where � is the distance between the origin and the reflection
points in units of R0; it is a function of the deformation
parameter � given implicitly by the equation

�2 +
2�3�

9
�3 = 1. �A6�

Since the reflection and translation matrices for all vertices
and sides are equal, the stability matrix is simply given by
M = �MrefMtr�3�M1

3. Using the symplectic nature of the ma-
trices M, we can express the trace of the full M in terms of
the trace of M1:

Tr M = Tr�M1�3 = �Tr M1�3 − 3 Tr M1. �A7�

Inserting Li+1,i=�3�R0, �i=� /6, and �A7� into �A3� and
�A5�, we get TrM1= �34�2−30� / �3−�2�. At the bifurcation
point, Tr M1=−1 and thus �=3 /�11. Inserting this into �A6�,
we get the deformation

�3A = 11/27 = 0.407407 . . . . �A8�

Bifurcations of the square orbit 4A and the linear orbit 2A in
the circle-to-square billiard system �5.2� are analyzed in the
same way. For both orbits, we have Tr M1=2−4�. Thus,
orbit 4A and the second repetition of orbit 2A have the same
value of Tr M at all deformations. The bifurcation deforma-
tion becomes, from Tr M1=0,

�4A = �2A2 = 1/2. �A9�

APPENDIX B: CLASSICAL PERTURBATION
OF THE CIRCULAR BILLIARD

In this appendix we calculate the change of the periodic
orbit lengths in the circular billiard, when it is perturbed by a
deformation

R��� = R0�1 − � cos n�� . �B1�

We consider the primitive periodic orbit family �v ,w�, with
mutually prime integers v and w representing the number of
vertices and the winding number around the origin, respec-
tively. Due to the deformation, the positions of the vertices �i
�i=1, . . . ,v� are shifted by ��i, which are of order �. The
distance between successive vertices is given by

Li+1,i
2 = Ri

2 + Ri+1
2 − 2RiRi+1 cos��i+1 − �i� , �B2�
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Ri = R��i�, �i = �0 + i
2w�

v
+ ��i,

where one of the two branches has �0=0 and the other
branch has �0=� / lnv, lnv being the least common multiple of
n and v. Inserting �B1� and keeping only terms up to first
order in �, we obtain


Li+1,i � R0�cos
w�

v
���i+1 − ��i� − � sin

w�

v
�cos�n�0

+
2niw�

v
� + cos�n�0 +

2n�i + 1�w�

v
��� . �B3�

Therefore, the changes of the periodic orbit lengths are


Lvw = �
i=1

v


Li+1,i � − 2�R0 sin
w�

v �
i=1

v

cos�n�0 +
2niw�

v
� .

�B4�

The sum on the right-hand side has a nonvanishing value
only for n /v= t, t being an integer; then, it becomes


Lvw = − 2v�R0 sin
w�

v
cos�n�0� = � 2v�R0 sin

w�

v
.

�B5�

All other periodic orbit families suffer a change of length
only at higher orders of �.
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