8 research outputs found
Matrix isolation studies of 185 nm light-induced cage reactions of o-chlorobenzaldehyde
VUV light photolysis of o-chlorobenzaldehyde (CBA) has been investigated by infrared spectroscopy in cryogenic Ar and O-2 matrices. Previously reported photoinduced rotational isomerization from anti- to syn-CBA was confirmed in the Ar matrix. In addition, absorption bands associated with photoinduced rearrangement to benzoyl chloride were observed accompanying the weak bands due to the CO photolysis product. However, in the reactive O-2 matrix, isomerization was observed and there was no evidence of benzoyl chloride formation. A kinetic analysis revealed that rearrangement was a minor process under the present excitation energy. The TD-B3LYP calculations show that as the excitation energy increases the predissociation channel will open and the repulsive (1)(pi, sigma(c-a)*) and 1(eta, sigma(c-a)*) states are directly achievable by the 185 nm excitation. Photoinduced rearrangement will be caused by the reaction of thus dissociated cage pairs.ArticleJOURNAL OF MOLECULAR STRUCTURE. 1025:48-52 (2012)journal articl
Stability of existing bridges improved by structural integration and nailing
AbstractTo examine whether and how the seismic stability of existing bridges can be substantially improved by integrating the girder, the abutments and the backfill, a series of shaking table tests were performed in 1 g. The tested small bridge models are (1) a conventional-type comprising a girder, supported by a pair of gravity-type abutments (without pile foundation) via bearings (fixed and movable), and unreinforced backfill, (2) the girder and the abutments of the above are integrated (without using bearings), (3) the backfill of the above is reinforced with two layers of large-diameter nails connected to the abutment top and the toe or the heel of the abutment footing and (4) the bottom nails of the above are replaced with longer ones connected to the toe of the abutment footing. Their dynamic behavior was analyzed as a damped single-degree-of-freedom system. The dynamic stability of the bridge was found to increase with an increase in (i) the dynamic strength against the response acceleration, (ii) the initial stiffness, (iii) the dynamic ductility (i.e., a smaller decreasing rate of stiffness during dynamic loading) and (iv) the damping ratio. When factors (ii) and (iii) are high enough, the natural frequency of a bridge can be kept much higher than the input frequency, and thus, the response acceleration can be kept low. All these factors can be improved by integrating the girder, the abutments and the backfill together with part of the supporting ground. In a series of static model tests, lateral cyclic displacements, caused by the seasonal thermal deformation of the girders with prototypes, were applied to the top of a small abutment model. The active failure in the backfill and the detrimental effects of large passive pressure, both developing due to the dual ratchet mechanism, can be effectively restrained by reinforcing the backfill and supporting the ground with nails connected to the top and the bottom of the abutments
Poorer Prognosis of Idiopathic Pleuroparenchymal Fibroelastosis Compared with Idiopathic Pulmonary Fibrosis in Advanced Stage
Objective. Idiopathic pleuroparenchymal fibroelastosis (IPPFE) is a rare disease characterized by predominant upper lobe pulmonary fibrosis of unknown etiology. However, the prognosis of IPPFE has not been discussed. We investigated the clinical characteristics and prognostic factors of IPPFE and idiopathic pulmonary fibrosis (IPF). Methods. We performed a retrospective cohort study on 375 consecutive idiopathic interstitial pneumonia patients between April 2004 and December 2014. Among them, we diagnosed IPPFE and IPF patients using high-resolution computed tomography radiological criteria. Results. Twenty-nine IPPFE patients (9 males, 20 females) and 67 IPF patients (54 males, 13 females) were enrolled. IPPFE patients were significantly more likely to be females and nonsmokers and had lower body mass index, lower values of predicted percentage of forced vital capacity (%FVC), and a higher residual volume-to-total lung capacity ratio than IPF patients. Survival analysis revealed that they had significantly poorer prognosis than IPF patients in GAP (gender, age, and physiology) stages II + III. %FVC and GAP index independently predict mortality in patients with IPPFE. Conclusions. Patients with IPPFE showed poorer prognosis in the advanced stage than patients with IPF. %FVC and GAP index are independent predictors of survival in patients with IPPFE
Radiocesium-bearing microparticles cause a large variation in 137Cs activity concentration in the aquatic insect Stenopsyche marmorata (Tricoptera: Stenopsychidae) in the Ota River, Fukushima, Japan.
After the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant accident in Japan, freshwater ecosystems near the site remained contaminated by radiocesium (RCs). Clarifying RCs concentrations in aquatic insects is crucial because fishes consume these insects that transfer RCs into freshwater ecosystems. As aquatic insects are usually measured for radioactivity in bulk samples of several tens of insects, variation in RCs concentration among individuals is not captured. In this study, we investigated the variability in 137Cs activity concentration in individual aquatic insects in detritivorous caddisfly (Stenopsyche marmorata) and carnivorous dobsonfly (Protohermes grandis) larvae from the Ota River, Fukushima. Caddisfly larvae showed sporadically higher radioactivity in 4 of the 46 caddisfly larvae, whereas no such outliers were observed in 45 dobsonfly larvae. Autoradiography and scanning electron microscopy analyses confirmed that these caddisfly larvae samples contained radiocesium-bearing microparticles (CsMPs), which are insoluble Cs-bearing silicate glass particles. CsMPs were also found in potential food sources of caddisfly larvae, such as periphyton and drifting particulate organic matter, indicating that larvae may ingest CsMPs along with food particles of similar size. Although CsMP distribution and uptake by organisms in freshwater ecosystems is relatively unknown, our study demonstrates that CsMPs can be taken up by aquatic insects
Volatile organic compounds in exhaled breath of idiopathic pulmonary fibrosis for discrimination from healthy subjects
Purpose: Human breath analysis is proposed with increasing frequency as a useful tool in clinical application. We performed this study to find the characteristic volatile organic compounds (VOCs) in the exhaled breath of patients with idiopathic pulmonary fibrosis (IPF) for discrimination from healthy subjects. Methods: VOCs in the exhaled breath of 40 IPF patients and 55 healthy controls were measured using a multi-capillary column and ion mobility spectrometer. The patients were examined by pulmonary function tests, blood gas analysis, and serum biomarkers of interstitial pneumonia. Results: We detected 85 VOC peaks in the exhaled breath of IPF patients and controls. IPF patients showed 5 significant VOC peaks; p-cymene, acetoin, isoprene, ethylbenzene, and an unknown compound. The VOC peak of p-cymene was significantly lower (p < 0.001), while the VOC peaks of acetoin, isoprene, ethylbenzene, and the unknown compound were significantly higher (p < 0.001 for all) compared with the peaks of controls. Comparing VOC peaks with clinical parameters, negative correlations with VC (r =−0.393, p = 0.013), %VC (r =−0.569, p < 0.001), FVC (r = −0.440, p = 0.004), %FVC (r =−0.539, p < 0.001), DLco (r =−0.394, p = 0.018), and %DLco (r =−0.413, p = 0.008) and a positive correlation with KL-6 (r = 0.432, p = 0.005) were found for p-cymene. Conclusion: We found characteristic 5 VOCs in the exhaled breath of IPF patients. Among them, the VOC peaks of p-cymene were related to the clinical parameters of IPF. These VOCs may be useful biomarkers of IPF