81 research outputs found

    巻頭言

    Get PDF

    幹細胞における糖鎖機能の解明

    Get PDF

    巻頭言

    Get PDF
    departmental bulletin pape

    The 3′-Phosphoadenosine 5′-Phosphosulfate Transporters, PAPST1 and 2, Contribute to the Maintenance and Differentiation of Mouse Embryonic Stem Cells

    Get PDF
    Recently, we have identified two 3′-phosphoadenosine 5′-phosphosulfate (PAPS) transporters (PAPST1 and PAPST2), which contribute to PAPS transport into the Golgi, in both human and Drosophila. Mutation and RNA interference (RNAi) of the Drosophila PAPST have shown the importance of PAPST-dependent sulfation of carbohydrates and proteins during development. However, the functional roles of PAPST in mammals are largely unknown. Here, we investigated whether PAPST-dependent sulfation is involved in regulating signaling pathways required for the maintenance of mouse embryonic stem cells (mESCs), differentiation into the three germ layers, and neurogenesis. By using a yeast expression system, mouse PAPST1 and PAPST2 proteins were shown to have PAPS transport activity with an apparent Km value of 1.54 µM or 1.49 µM, respectively. RNAi-mediated knockdown of each PAPST induced the reduction of chondroitin sulfate (CS) chain sulfation as well as heparan sulfate (HS) chain sulfation, and inhibited mESC self-renewal due to defects in several signaling pathways. However, we suggest that these effects were due to reduced HS, not CS, chain sulfation, because knockdown of mouse N-deacetylase/N-sulfotransferase, which catalyzes the first step of HS sulfation, in mESCs gave similar results to those observed in PAPST-knockdown mESCs, but depletion of CS chains did not. On the other hand, during embryoid body formation, PAPST-knockdown mESCs exhibited abnormal differentiation, in particular neurogenesis was promoted, presumably due to the observed defects in BMP, FGF and Wnt signaling. The latter were reduced as a result of the reduction in both HS and CS chain sulfation. We propose that PAPST-dependent sulfation of HS or CS chains, which is regulated developmentally, regulates the extrinsic signaling required for the maintenance and normal differentiation of mESCs

    Insight into the Regulation of Glycan Synthesis in Drosophila Chaoptin Based on Mass Spectrometry

    Get PDF
    BACKGROUND: A variety of N-glycans attached to protein are known to involve in many important biological functions. Endoplasmic reticulum (ER) and Golgi localized enzymes are responsible to this template-independent glycan synthesis resulting glycoforms at each asparagine residues. The regulation mechanism such glycan synthesis remains largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the relationship between glycan structure and protein conformation, we analyzed a glycoprotein of Drosophila melanogaster, chaoptin (Chp), which is localized in photoreceptor cells and is bound to the cell membrane via a glycosylphosphatidylinositol anchor. Detailed analysis based on mass spectrometry revealed the presence of 13 N-glycosylation sites and the composition of the glycoform at each site. The synthetic pathway of glycans was speculated from the observed glycan structures and the composition at each N-glycosylation site, where the presence of novel routes were suggested. The distribution of glycoforms on a Chp polypeptide suggested that various processing enzymes act on the exterior of Chp in the Golgi apparatus, although virtually no enzyme can gain access to the interior of the horseshoe-shaped scaffold, hence explaining the presence of longer glycans within the interior. Furthermore, analysis of Chp from a mutant (RNAi against dolichyl-phosphate alpha-d-mannosyltransferase), which affects N-glycan synthesis in the ER, revealed that truncated glycan structures were processed. As a result, the distribution of glycoforms was affected for the high-mannose-type glycans only, whereas other types of glycans remained similar to those observed in the control and wild-type. CONCLUSIONS/SIGNIFICANCE: These results indicate that glycan processing depends largely on the backbone structure of the parent polypeptide. The information we obtained can be applied to other members of the LRR family of proteins

    Identification of Genes Required for Neural-Specific Glycosylation Using Functional Genomics

    Get PDF
    Glycosylation plays crucial regulatory roles in various biological processes such as development, immunity, and neural functions. For example, α1,3-fucosylation, the addition of a fucose moiety abundant in Drosophila neural cells, is essential for neural development, function, and behavior. However, it remains largely unknown how neural-specific α1,3-fucosylation is regulated. In the present study, we searched for genes involved in the glycosylation of a neural-specific protein using a Drosophila RNAi library. We obtained 109 genes affecting glycosylation that clustered into nine functional groups. Among them, members of the RNA regulation group were enriched by a secondary screen that identified genes specifically regulating α1,3-fucosylation. Further analyses revealed that an RNA–binding protein, second mitotic wave missing (Swm), upregulates expression of the neural-specific glycosyltransferase FucTA and facilitates its mRNA export from the nucleus. This first large-scale genetic screen for glycosylation-related genes has revealed novel regulation of fucTA mRNA in neural cells

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore