932 research outputs found
One-by-one trap activation in silicon nanowire transistors
Flicker or 1/f noise in metal-oxide-semiconductor field-effect transistors
(MOSFETs) has been identified as the main source of noise at low frequency. It
often originates from an ensemble of a huge number of charges trapping and
detrapping. However, a deviation from the well-known model of 1/f noise is
observed for nanoscale MOSFETs and a new model is required. Here, we report the
observation of one-by-one trap activation controlled by the gate voltage in a
nanowire MOSFET and we propose a new low-frequency-noise theory for nanoscale
FETs. We demonstrate that the Coulomb repulsion between electronically charged
trap sites avoids the activation of several traps simultaneously. This effect
induces a noise reduction by more than one order of magnitude. It decreases
when increasing the electron density in the channel due to the electrical
screening of traps. These findings are technologically useful for any FETs with
a short and narrow channel.Comment: One file with paper and supplementary informatio
Impact of Metabolomics in Symbiosis Research
In symbiotic associations, there is a constant molecular complexity that allows establishment and maintenance of the relationship. Metabolomic profiles have enabled researchers to explain symbiotic associations in terms of their underlying molecules and interactions between the symbiotic partners. In this review, we have selected studies on symbioses as examples that have helped to explain the metabolic integration of bacterial symbionts and their hosts in an effort to understand the molecular fingerprint of animal-microbial symbioses
Editorial : Symbiosis in a Changing Environment
& nbsp;& nbsp;Non peer reviewe
Phonon Universal Transmission Fluctuations and Localization in Semiconductor Superlattices with a Controlled Degree of Order
We study both analytically and numerically phonon transmission fluctuations
and localization in partially ordered superlattices with correlations among
neighboring layers. In order to generate a sequence of layers with a varying
degree of order we employ a model proposed by Hendricks and Teller as well as
partially ordered versions of deterministic aperiodic superlattices. By
changing a parameter measuring the correlation among adjacent layers, the
Hendricks- Teller superlattice exhibits a transition from periodic ordering,
with alterna- ting layers, to the phase separated opposite limit; including
many intermediate arrangements and the completely random case. In the partially
ordered versions of deterministic superlattices, there is short-range order
(among any conse- cutive layers) and long range disorder, as in the N-state
Markov chains. The average and fluctuations in the transmission, the
backscattering rate, and the localization length in these multilayered systems
are calculated based on the superlattice structure factors we derive
analytically. The standard deviation of the transmission versus the average
transmission lies on a {\it universal\/} curve irrespective of the specific
type of disorder of the SL. We illustrate these general results by applying
them to several GaAs-AlAs superlattices for the proposed experimental
observation of phonon universal transmission fluctuations.Comment: 16-pages, Revte
Gene therapy restores vision in rd1 mice after removal of a confounding mutation in Gpr179
The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice
Anomalous thermal conductivity and local temperature distribution on harmonic Fibonacci chains
The harmonic Fibonacci chain, which is one of a quasiperiodic chain
constructed with a recursion relation, has a singular continuous
frequency-spectrum and critical eigenstates. The validity of the Fourier law is
examined for the harmonic Fibonacci chain with stochastic heat baths at both
ends by investigating the system size N dependence of the heat current J and
the local temperature distribution. It is shown that J asymptotically behaves
as (ln N)^{-1} and the local temperature strongly oscillates along the chain.
These results indicate that the Fourier law does not hold on the harmonic
Fibonacci chain. Furthermore the local temperature exhibits two different
distribution according to the generation of the Fibonacci chain, i.e., the
local temperature distribution does not have a definite form in the
thermodynamic limit. The relations between N-dependence of J and the
frequency-spectrum, and between the local temperature and critical eigenstates
are discussed.Comment: 10 pages, 4 figures, submitted to J. Phys.: Cond. Ma
- …