578 research outputs found

    Comments on Supersymmetric Vector and Matrix Models

    Full text link
    Some results in random matrices are generalized to supermatrices, in particular supermatrix integration is reduced to an integration over the eigenvalues and the resulting volume element is shown to be equivalent to a one dimensional Coulomb gas of both positive and negative charges.It is shown that,for polynomial potentials, after removing the instability due to the annihilation of opposite charges, supermatrix models are indistinguishable from ordinary matrix models, in agreement with a recent result by Alvarez-Gaume and Manes. It is pointed out however that this may not be true for more general potentials such as for instance the supersymmetric generalization of the Penner model.Comment: 6 page

    Modular analysis of the control of flagellar Ca2+-spike trains produced by CatSper and CaV channels in sea urchin sperm

    Get PDF
    Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion

    Comment on Dirac spectral sum rules for QCD_3

    Get PDF
    Recently Magnea hep-th/9907096 , hep-th/9912207 [Phys.Rev.D61, 056005 (2000); Phys.Rev.D62, 016005 (2000)] claimed to have computed the first sum rules for Dirac operators in 3D gauge theories from 0D non-linear sigma models. I point out that these computations are incorrect, and that they contradict with the exact results for the spectral densities unambiguously derived from random matrix theory by Nagao and myself.Comment: REVTeX 3.1, 2 pages, no figure. (v2) redundant part removed, conclusion unchange

    Scaling Behaviors of Branched Polymers

    Get PDF
    We study the thermodynamic behavior of branched polymers. We first study random walks in order to clarify the thermodynamic relation between the canonical ensemble and the grand canonical ensemble. We then show that correlation functions for branched polymers are given by those for Ď•3\phi^3 theory with a single mass insertion, not those for the Ď•3\phi^3 theory themselves. In particular, the two-point function behaves as 1/p41/p^4, not as 1/p21/p^2, in the scaling region. This behavior is consistent with the fact that the Hausdorff dimension of the branched polymer is four.Comment: 17 pages, 3 figure

    Variational approach to the scattering of charged particles by a many-electron system

    Get PDF
    We report a variational approach to the nonlinearly screened interaction of charged particles with a many-electron system. This approach has been developed by introducing a modification of the Schwinger variational principle of scattering theory, which allows to obtain nonperturbative scattering cross-sections of moving projectiles from the knowledge of the linear and quadratic density-response functions of the target. Our theory is illustrated with a calculation of the energy loss per unit path length of slow antiprotons moving in a uniform electron gas, which shows good agreement with a fully nonlinear self-consistent Hartree calculation. Since available self-consistent calculations are restricted to low heavy-projectile velocities, we expect our theory to have novel applications to a variety of processes where nonlinear screening plays an important role.Comment: 10 pages, 2 figures; Accepted to Physical Review

    On gonihedric loops and quantum gravity

    Full text link
    We present an analysis of the gonihedric loop model, a reformulation of the two dimensional gonihedric spin model, using two different techniques. First, the usual regular lattice statistical physics problem is mapped onto a height model and studied analytically. Second, the gravitational version of this loop model is studied via matrix models techniques. Both methods lead to the conclusion that the model has cmatter=0c_{matter}=0 for all values of the parameters of the model. In this way it is possible to understand the absence of a continuous transition

    Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm

    Get PDF
    Eggs of many marine and mammalian species attract sperm by releasing chemoattractants that modify the bending properties of flagella to redirect sperm paths toward the egg. This process, called chemotaxis, is dependent on extracellular Ca2+. We used stroboscopic fluorescence imaging to measure intracellular Ca2+ concentration ([Ca2+]i) in the flagella of swimming sea urchin sperm. Uncaging of cyclic GMP induced Ca2+ entry via at least two distinct pathways, and we identified a nimodipine-sensitive pathway, compartmentalized in the flagella, as a key regulator of flagellar bending and directed motility changes. We found that, contrary to current models, the degree of flagellar bending does not vary in proportion to the overall [Ca2+]i. Instead we propose a new model whereby flagella bending is increased by Ca2+ flux through the nimodipine-sensitive pathway, and is unaffected by [Ca2+]i increases through alternative pathways

    Eigenvalue correlations in non-Hermitean symplectic random matrices

    Full text link
    Correlation function of complex eigenvalues of N by N random matrices drawn from non-Hermitean random matrix ensemble of symplectic symmetry is given in terms of a quaternion determinant. Spectral properties of Gaussian ensembles are studied in detail in the regimes of weak and strong non-Hermiticity.Comment: 14 page

    Correlation functions of the BC Calogero-Sutherland model

    Full text link
    The BC-type Calogero-Sutherland model (CSM) is an integrable extension of the ordinary A-type CSM that possesses a reflection symmetry point. The BC-CSM is related to the chiral classes of random matrix ensembles (RMEs) in exactly the same way as the A-CSM is related to the Dyson classes. We first develop the fermionic replica sigma-model formalism suitable to treat all chiral RMEs. By exploiting ''generalized color-flavor transformation'' we then extend the method to find the exact asymptotics of the BC-CSM density profile. Consistency of our result with the c=1 Gaussian conformal field theory description is verified. The emerging Friedel oscillations structure and sum rules are discussed in details. We also compute the distribution of the particle nearest to the reflection point.Comment: 12 pages, no figure, REVTeX4. sect.V updated, references added (v3
    • …
    corecore