415 research outputs found

    Phenothiazine-functionalized redox polymers for a new cathode-active material

    Get PDF

    Electronic Control of Spin Alignment in pi-Conjugated Molecular Magnets

    Full text link
    Intramolecular spin alignment in pi-conjugated molecules is studied theoretically in a model of a Peierls-Hubbard chain coupled with two localized spins. By means of the exact diagonalization technique, we demonstrate that a spin singlet (S=0) to quartet (S=3/2) transition can be induced by electronic doping, depending on the chain length, the positions of the localized spins, and the sign of the electron-spin coupling. The calculated results provides a theoretical basis for understanding the mechanism of spin alignment recently observed in a diradical donor molecule.Comment: 4 pages, 4 figures, Physical Review Letters (in press

    Additional Evidence for the Surface Origin of the Peculiar Angular-Dependent Magnetoresistance Oscillations Discovered in a Topological Insulator Bi_{1-x}Sb_{x}

    Full text link
    We present detailed data on the unusual angular-dependent magnetoresistance oscillation phenomenon recently discovered in a topological insulator Bi_{0.91}Sb_{0.09}. Direct comparison of the data taken before and after etching the sample surface gives compelling evidence that this phenomenon is essentially originating from a surface state. The symmetry of the oscillations suggests that it probably comes from the (111) plane, and obviously a new mechanism, such as a coupling between the surface and the bulk states, is responsible for this intriguing phenomenon in topological insulators.Comment: 5 pages, 4 figures, Proceedings manuscript for the 19th International Conference on the Application of High Magnetic Fields in Semiconductor Physics and Nanotechnology (HMF-19

    Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks

    Get PDF
    Weinvestigate the thickness and temperature dependence of a series of Ni0.8Fe0.2/Ir0.2Mn0.8 bilayer samples with varying thickness ratio of the ferromagnet/antiferromagnet (tFM tAFM) in order to explore the exchange coupling strengths in tunneling anisotropic magnetoresistance (TAMR) devices. Specific values of tFM tAFM lead to four distinct scenarios with specific electric responses to moderate magnetic fields. The characteristic dependence of the measured TAMR signal on applied voltage allows us to confirm its persistence up to room temperature despite an overlapped contribution by a thermal magnetic noise

    Prominin-1 Modulates Rho/ROCK-Mediated Membrane Morphology and Calcium-Dependent Intracellular Chloride Flux

    Get PDF
    Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance

    The diastereoselective Meth-Cohn epoxidation of camphor-derived vinyl sulfones

    Get PDF
    Some camphor-derived vinyl sulfones bearing oxygen functionality at the allylic position have been synthesized and their nucleophilic epoxidation reactions under Meth-Cohn conditions have been explored. The γ-oxygenated camphor-derived vinyl sulfones underwent mildly diastereoselective nucleophilic epoxidation reactions, affording the derived sulfonyloxiranes in up to 5.8:1 dr. The observed diastereoselectivities were sensitive to the reaction conditions employed. In contrast, no stereoselectivity was observed in the nucleophilic epoxidation of the corresponding γ-oxygenated isobornyl vinyl sulfone. A tentative mechanism has been proposed to explain the origins of the diastereoselectivit

    Paintable Battery

    Get PDF
    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials such as metals, glass, glazed ceramics and flexible polymer substrates. We also demonstrate the possibility of interconnected modular spray painted battery units to be coupled to energy conversion devices such as solar cells, with possibilities of building standalone energy capture-storage hybrid devices in different configurations

    Ultrafast All-Polymer Paper-Based Batteries

    Get PDF
    Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g-1 and batteries based on this material can be charged with currents as high as 600 mA cm-2 with only 6 % loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g-1 or 38-50 mAh g-1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. There is currently a great interest in the development of thin, flexible, lightweight, and environmentally friendly batteries and supercapacitors.1 In this process, the preparation of novel redox polymer and electronically conducting polymer-base
    corecore