57 research outputs found

    Treatment outcomes of real-time intraoral sonography-guided implantation technique of 198Au grain brachytherapy for T1 and T2 tongue cancer

    Get PDF
    It is often challenging to determine the accurate size and shape of oral lesions through computed tomography (CT) or magnetic resonance imaging (MRI) when they are very small or obscured by metallic artifacts, such as dental prostheses. Intraoral ultrasonography (IUS) has been shown to be beneficial in obtaining precise information about total tumor extension, as well as the exact location and guiding the insertion of catheters during interstitial brachytherapy. We evaluated the role of IUS in assessing the clinical outcomes of interstitial brachytherapy with 198Au grains in tongue cancer through a retrospective medical chart review. The data from 45 patients with T1 (n = 21) and T2 (n = 24) tongue cancer, who were mainly treated with 198Au grain implants between January 2005 and April 2019, were included in this study. 198Au grain implantations were carried out, and positioning of the implants was confirmed by IUS, to ensure that 198Au grains were appropriately placed for the deep border of the tongue lesion. The five-year local control rates of T1 and T2 tongue cancers were 95.2% and 95.5%, respectively. We propose that the use of IUS to identify the extent of lesions and the position of implanted grains is effective when performing brachytherapy with 198Au grains

    Comparative genomic analysis of Vibrio parahaemolyticus: serotype conversion and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio parahaemolyticus </it>is a common cause of foodborne disease. Beginning in 1996, a more virulent strain having serotype O3:K6 caused major outbreaks in India and other parts of the world, resulting in the emergence of a pandemic. Other serovariants of this strain emerged during its dissemination and together with the original O3:K6 were termed strains of the pandemic clone. Two genomes, one of this virulent strain and one pre-pandemic strain have been sequenced. We sequenced four additional genomes of <it>V. parahaemolyticus </it>in this study that were isolated from different geographical regions and time points. Comparative genomic analyses of six strains of <it>V. parahaemolyticus </it>isolated from Asia and Peru were performed in order to advance knowledge concerning the evolution of <it>V. parahaemolyticus</it>; specifically, the genetic changes contributing to serotype conversion and virulence. Two pre-pandemic strains and three pandemic strains, isolated from different geographical regions, were serotype O3:K6 and either toxin profiles (<it>tdh+</it>, <it>trh</it>-) or (<it>tdh-</it>, <it>trh</it>+). The sixth pandemic strain sequenced in this study was serotype O4:K68.</p> <p>Results</p> <p>Genomic analyses revealed that the <it>trh</it>+ and <it>tdh</it>+ strains had different types of pathogenicity islands and mobile elements as well as major structural differences between the <it>tdh </it>pathogenicity islands of the pre-pandemic and pandemic strains. In addition, the results of single nucleotide polymorphism (SNP) analysis showed that 94% of the SNPs between O3:K6 and O4:K68 pandemic isolates were within a 141 kb region surrounding the O- and K-antigen-encoding gene clusters. The "core" genes of <it>V. parahaemolyticus </it>were also compared to those of <it>V. cholerae </it>and <it>V. vulnificus</it>, in order to delineate differences between these three pathogenic species. Approximately one-half (49-59%) of each species' core genes were conserved in all three species, and 14-24% of the core genes were species-specific and in different functional categories.</p> <p>Conclusions</p> <p>Our data support the idea that the pandemic strains are closely related and that recent South American outbreaks of foodborne disease caused by <it>V. parahaemolyticus </it>are closely linked to outbreaks in India. Serotype conversion from O3:K6 to O4:K68 was likely due to a recombination event involving a region much larger than the O-antigen- and K-antigen-encoding gene clusters. Major differences between pathogenicity islands and mobile elements are also likely driving the evolution of <it>V. parahaemolyticus</it>. In addition, our analyses categorized genes that may be useful in differentiating pathogenic Vibrios at the species level.</p

    A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific

    Get PDF
    peer-reviewedBackground: Spermatozoa have a remarkable epigenome in line with their degree of specialization, their unique nature and different requirements for successful fertilization. Accordingly, perturbations in the establishment of DNA methylation patterns during male germ cell differentiation have been associated with infertility in several species.Background: Spermatozoa have a remarkable epigenResults: The quantification of DNA methylation at CCGG sites using luminometric methylation assay (LUMA) highlighted the undermethylation of bull sperm compared to the sperm of rams, stallions, mice, goats and men. Total blood cells displayed a similarly high level of methylation in bulls and rams, suggesting that undermethylation of the bovine genome was specific to sperm. Annotation of CCGG sites in different species revealed no striking bias in the distribution of genome features targeted by LUMA that could explain undermethylation of bull sperm. To map DNA methylation at a genome-wide scale, bull sperm was compared with bovine liver, fibroblasts and monocytes using reduced representation bisulfite sequencing (RRBS) and immunoprecipitation of methylated DNA followed by microarray hybridization (MeDIP-chip). These two methods exhibited differences in terms of genome coverage, and consistently, two independent sets of sequences differentially methylated in sperm and somatic cells were identified for RRBS and MeDIP-chip. Remarkably, in the two sets most of the differentially methylated sequences were hypomethylated in sperm. In agreement with previous studies in other species, the sequences that were specifically hypomethylated in bull sperm targeted processes relevant to the germline differentiation program (piRNA metabolism, meiosis, spermatogenesis) and sperm functions (cell adhesion, fertilization), as well as satellites and rDNA repeats. Conclusions: These results highlight the undermethylation of bull spermatozoa when compared with both bovine somatic cells and the sperm of other mammals, and raise questions regarding the dynamics of DNA methylation in bovine male germline. Whether sperm undermethylation has potential interactions with structural variation in the cattle genome may deserve further attention. While bull semen is widely used in artificial insemination, the literature describing DNA methylation in bull spermatozoa is still scarce. The purpose of this study was therefore to characterize the bull sperm methylome relative to both bovine somatic cells and the sperm of other mammals through a multiscale analysis
    corecore