3,931 research outputs found

    Implications of μ−τ\mu-\tau Flavored CP Symmetry of Leptons

    Get PDF
    We discuss gauge models incorporating μ−τ\mu-\tau flavored CP symmetry (called CPμτ^{\mu\tau} in the text) in combination with Lμ−LτL_\mu-L_\tau invariance to understand neutrino mixings and discuss their phenomenological implications. We show that viable leptogenesis in this setting requires that the lightest right-handed neutrino mass must be between 109−101210^9-10^{12} GeV and for effective two hierarchical right-handed neutrinos, leptogenesis takes place only in a narrower range of 5×1010−10125\times 10^{10}-10^{12} GeV. A multi-Higgs realization of this idea implies that there must be a pseudoscalar Higgs boson with mass less than 300 GeV. Generically, the vev alignment problem can be naturally avoided in our setting.Comment: 34pp. v3: matches journal versio

    Formation and Disruption of Cosmological Low Mass Objects

    Get PDF
    We investigate the evolution of cosmological low mass (low virial temperature) objects and the formation of the first luminous objects. First, the `cooling diagram' for low mass objects is shown. We assess the cooling rate taking into account the contribution of H_2, which is not in chemical equilibrium generally, with a simple argument of time scales. The reaction rates and the cooling rate of H_2 are taken from the recent results by Galli & Palla (1998). Using this cooling diagram, we also estimate the formation condition of luminous objects taking into account the supernova (SN) disruption of virialized clouds. We find that the mass of the first luminous object is several times 10^7 solar mass, because smaller objects may be disrupted by the SNe before they become luminous. Metal pollution of low mass (Ly-alpha) clouds also discussed. The resultant metallicity of the clouds is about 1/1000 of the solar metallicity.Comment: 11 pages, 2 figures, To appear in ApJ

    Axion Like Particles and the Inverse Seesaw Mechanism

    Get PDF
    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ\gamma-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1)(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange

    CP violation conditions in N-Higgs-doublet potentials

    Get PDF
    Conditions for CP violation in the scalar potential sector of general N-Higgs-doublet models (NHDMs) are analyzed from a group theoretical perspective. For the simplest two-Higgs-doublet model (2HDM) potential, a minimum set of conditions for explicit and spontaneous CP violation is presented. The conditions can be given a clear geometrical interpretation in terms of quantities in the adjoint representation of the basis transformation group for the two doublets. Such conditions depend on CP-odd pseudoscalar invariants. When the potential is CP invariant, the explicit procedure to reach the real CP-basis and the explicit CP transformation can also be obtained. The procedure to find the real basis and the conditions for CP violation are then extended to general NHDM potentials. The analysis becomes more involved and only a formal procedure to reach the real basis is found. Necessary conditions for CP invariance can still be formulated in terms of group invariants: the CP-odd generalized pseudoscalars. The problem can be completely solved for three Higgs-doublets.Comment: RevTeX4 used. Minor modifications, in particular, the parameter counting of ZZ. v3: Eqs.(28)-(31) correcte

    Cell-autonomous inhibition of alpha 7-containing nicotinic acetylcholine receptors prevents death of parasympathetic neurons during development

    Get PDF
    Neurotrophic molecules are key retrograde influences of cell survival in the developing nervous system, but other influences such as activity are also emerging as important factors. In the avian ciliary ganglion, half the neurons are eliminated between embryonic day 8 (E8) and E14, but it is not known how cell death is initiated. Because systemic application of alpha7-nicotinic acetylcholine receptor (nAChR) antagonists prevents this cell loss, we examined differences in receptor densities and responses of intracellular calcium to nicotine using the calcium-sensitive dye fura-2. In addition, we determined whether cell-autonomous inhibition of alpha7 activation in neurons prevented cell death. E8 neurons are heterogeneous with respect to alpha7-nAChR density, which leads to large increases in [Ca2+]i in some neurons; E8 neurons also exhibit a slower rate of Ca2+ decay after nicotinic stimulation than E13 neurons. Expressing alpha-bungarotoxin that is tethered to the membrane by a glycosylphosphatidylinositol linkage (GPIalpha btx) in ciliary ganglion neurons with the retroviral vector RCASBP(A) blocks increases in intracellular calcium induced by nicotine through alpha7-nAChRs and prevents neurons from dying. Expression of GPIalpha btx in surrounding non-neural tissues, but not in neurons, does not prevent cell loss. Furthermore, the GPIalpha btx is not efficiently expressed in the accessory oculomotor neurons, eliminating preganglionic inputs as another site for action of the antagonist. These results support the hypothesis that cholinergic inputs facilitate cell death in the developing autonomic nervous system by activating alpha7-nAChRs, possibly by leading to increases in intracellular calcium that exceed the threshold for cell survival

    Formation of Primordial Protostars

    Get PDF
    The evolution of collapsing metal free protostellar clouds is investigated for various masses and initial conditions. We perform hydrodynamical calculations for spherically symmetric clouds taking account of radiative transfer of the molecular hydrogen lines and the continuum, as well as of chemistry of the molecular hydrogen. The collapse is found to proceed almost self-similarly like Larson-Penston similarity solution. In the course of the collapse, efficient three-body processes transform atomic hydrogen in an inner region of \sim 1 M_{\sun} entirely into molecular form. However, hydrogen in the outer part remains totally atomic although there is an intervening transitional layer of several solar masses, where hydrogen is in partially molecular form. No opaque transient core is formed although clouds become optically thick to H2_{2} collision-induced absorption continuum, since H2_{2} dissociation follows successively. When the central part of the cloud reaches stellar densities (∼10−2gcm−3\sim 10^{-2} {\rm g cm^{-3}}), a very small hydrostatic core (\sim 5 \times 10^{-3} M_{\sun}) is formed and subsequently grows in mass as the ambient gas accretes onto it. The mass accretion rate is estimated to be 3.7 \times 10^{-2} M_{\sun} {\rm yr^{-1}} (M_{\ast}/M_{\sun})^{-0.37}, where M∗M_{\ast} is instantaneous mass of the central core, by using a similarity solution which reproduces the evolution of the cloud before the core formation.Comment: 20 pages, 5 Postscript figures, uses AAS LaTe
    • …
    corecore