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1 Introduction

Phenomenal success of experimental research in neutrino physics in the last two decades

have led not only to unequivocally establishing that neutrinos have mass but also to an

almost complete determination of flavor mixings between the different lepton generations.

The missing parts are: (i) the Dirac CP phase, (ii) neutrino mass hierarchy and (iii) a

knowledge of whether neutrinos are Majorana or Dirac fermions. Assuming that there are

no extra sterile neutrinos, the discovery of the CP phase for neutrinos would put flavor

information on leptons on the same footing as quarks. If neutrinos are Majorana fermions,

there would be two more phases present in the flavor space and for complete information,

one will need information on them. The latest global fits [1, 2] of neutrino parameters

point to a preference for a negative value for the Dirac CP phase, −π < δCP < 0. A key

focus of experimental research in neutrino physics at the moment is therefore to determine

the Dirac CP phase in addition to answering the question of whether neutrinos are Dirac

or Majorana particles and their mass hierarchy. An additional motivation to determine
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the Dirac CP phase comes from its possible connection to understanding the origin of

matter and anti-matter asymmetry in the universe via leptogenesis [3, 4]. While it is well

known that non-observation of a non-zero Dirac CP phase does not preclude leptogenesis,

its observation can nonetheless provide important insight into the latter [5–8].

On the theory front, understanding of the lepton mixing angles θij has been one of

the two major driving forces of much of the research in this field, the other being to probe

the scale of neutrino masses. In the former case, symmetries have been used as a main

tool, motivated by the observation that mixing angles θ23 ∼ π
4 and sinθ12 ∼ 1√

3
, suggesting

their possible group theoretic origin [9, 10]. Among the very first symmetries studied for

neutrinos is the µ-τ exchange symmetry [11–23], which not only predicted maximal θ23 but

also that θ13 = 0. Many other symmetries such as S4, A4, ∆(3n2), etc., were considered

later on. The so-called tri-bi-maximal (TBM) mixing pattern [24–26] which embodied all

these three features, i.e., θ23 ∼ π
4 , sinθ12 ∼ 1√

3
as well as θ13 = 0, together with the

symmetry techniques to obtain this pattern, gave a big boost to this approach. Discovery

of a non-zero and large value for θ13 [27–31] was a turning point in this research since

it ruled out the tri-bi-maximal mixing pattern. Since then, many attempts have been

made to combine flavor symmetries with CP transformation to accommodate a non-zero

θ13 while trying to predict the Dirac CP phase [32–51], sometimes without imposing CP

explicitly [52–54].

In this paper, we pursue this line of research and consider a simple approach based

on a generalized definition of CP transformation that mixes it with µ-τ exchange (called

CPµτ from now on) [32–34]. This symmetry is known to accommodate a non-zero θ13

while at the same time predicting a Dirac CP phase δ ∼ ±900 [32–34, 52] if the charged

lepton mass matrices are taken diagonal. There are also models where one has deviations

from the exact CPµτ limit [55, 56]. A key challenge to building such models has been that

in the CPµτ symmetry limit, the muon and tau lepton Yukawa couplings are degenerate,

leading to same masses. In ref. [32–34], explicit soft breaking terms were introduced to

generate the µτ mass splitting. Another uncomfortable feature of these models has been

its apparent inability to explain the origin of matter via leptogenesis [32–34]. We address

both these issues in this paper. Our goal is to present a model where starting with a high

scale symmetry, we find a low energy effective theory where the neutrino sector maintains

exact CPµτ symmetry whereas in the charged lepton sector, the symmetry is spontaneously

broken so as to allow the muon and tau masses to be different. We give two examples:

one with an extended Higgs sector and another with an extension involving heavy vector

like fermions. The former has interesting implications for Higgs physics that we discuss

below. We also show that there exists a limited range of seesaw scales where successful

leptogenesis can take place, when lepton flavor effects are taken into account.

As a part of this investigation, we also identify the combination of family lepton num-

bers Lµ−Lτ [57, 58] (which we denote as U(1)µ−τ ) as the largest natural abelian symmetry

that can be imposed in conjunction with CPµτ , thus providing the simplest example of

combining an abelian symmetry with CP, yet with predictive CP violation at low energies.

We arrive then at a natural setting where Gl = U(1)µ−τ can be the residual symmetry of

the charged lepton sector (ensuring diagonal mass matrix) and Gν = ZCP
2 , generated by
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CPµτ , is the residual symmetry of the neutrino sector. Because of the properties of U(1)µ−τ
and CPµτ , these residual symmetries can be maintained separately in each sector without

perturbing interactions in the scalar potential, thus avoiding the vev alignment problem of

flavor symmetry models with larger nonabelian groups.

New results of the paper are: (i) construction of a model with natural residual symme-

tries Gl and Gν but without soft breaking of CPµτ ; (ii) discussion of how one can implement

successful leptogenesis in these models and constraints imposed by it on the seesaw scale

and (iii) implications for neutrino-less double beta decay and Higgs physics.

This paper is organized as follows: in section 2, we review the consequences of CPµτ

on the neutrino mass matrix and PMNS. Sections 3 and 4 present general consequences

of CPµτ symmetry on neutrino-less double beta decay and leptogenesis. In section 5, we

introduce the generalized CP like symmetries and show how CPµτ symmetry emerges as

the trivial automorphism of gauged U(1)µ−τ symmetry. We then present a multi-Higgs

implementation of the symmetry in section 6, together with some phenomenological impli-

cations. Our paper is summarized in section 7. The appendices contain the proof of the

uniqueness of CPµτ , the CPµτ symmetry in the real basis and another realization of the

idea where Gl×Gν is exact at high energies, which uses heavy vector like fermions instead

of extra weak scale Higgs doublets.

2 Maximal θ23 and Dirac CP phase from CPµτ : a review

The latest global fits [1, 2] of neutrino parameters still allows maximal atmospheric angle

θ23 = 45◦ within 2σ and also point to a preference for negative values for the Dirac CP

phase, −180◦ < δCP < 0. It was pointed out in [32–34] that maximal θ23 and maximal

δCP, i.e.,

θ23 = π/4 and δCP = ±π/2 , (2.1)

follow from the neutrino mass matrix invariant under CPµτ symmetry. In the flavor basis

(fixed by some Gl), it corresponds to the relation:

XTMνX = M∗ν , (2.2)

where

X =

1 0 0

0 0 1

0 1 0

 . (2.3)

Clearly, this symmetry can be implemented in the neutrino sector as the composition

of µτ interchange symmetry with CP conjugation. We will show a simple and natural

setting where this symmetry survives in the neutrino sector but is broken in the charged

lepton sector.

Let us review some aspects of CPµτ . First, the symmetry (2.2) implies a neutrino mass

matrix of the form [32–34, 52]

Mν =

 a d d∗

d c b

d∗ b c∗

 , (2.4)
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where a, b are real whereas c, d are complex a priori. It is necessary that both c 6= 0, d 6= 0,

and Im(d2c∗) 6= 0, to ensure θ13 6= 0 [33] because a rephasing transformation can turn Mν

to a matrix invariant under the simpler (unitary) µτ interchange symmetry.

One can show that a matrix of the form (2.4) can be always diagonalized by a matrix

of the form [32–34]

U0 =

u1 u2 u3

w1 w2 w3

w∗1 w
∗
2 w

∗
3

 , (2.5)

where ui are real and conventionally positive. Application of complex conjugation on Mν

and U0 shows that the diagonalization of (2.4),

UT
0 MνU0 = diag(±mi) , (2.6)

already leads to real diagonal entries, so that the Majorana phases are trivial, i.e., either 1

or i. Therefore, we can write for the complete diagonalization matrix,

Uν = U (0)
ν Kν , (2.7)

where U
(0)
ν has the form (2.5) andKν is diagonal and contains the Majorana phases (Kν)ii =

1 or i. We denote the different possibilities by

diagonal of K2
ν ∼ (+ + +), (−+ +), (+−+) or (+ +−) , (2.8)

which correspond to the CP parities of νiL assuming CPµτ .

It is easy to see that U0 obeys

|(U0)µj | = |(U0)τj | , for j = 1, 2, 3. (2.9)

The equality for j = 3 signals maximal θ23. The equality for j = 1, 2, easily seen in the

standard parametrization, leads to [32–34]

sin θ13 sin δCP = 0 . (2.10)

This signals maximal δCP since θ13 6= 0.

3 Neutrino-less double beta decay in theories with CPµτ

For Majorana neutrinos, there is a nonzero probability of neutrino-less double beta decay

to occur. The rate depends on the square of the modulus of

mee ≡
∑
i

miU
2
ei . (3.1)

In general, this quantity depends on the Dirac CP phase (depending on the convention) and

Majorana CP phases. For the theory invariant under Gν = ZCP
2 and Gl ⊂ U(1)µ−τ , δCP =

±π/2, only a discrete choice of possibilities for the Majorana phases remain. We obtain

mee =
∑
i

m′iU
(0)
ei

2
, (3.2)

where U
(0)
ei are real positive quantities fixed by θ12, θ13, cf. (2.7), and m′i = ±mi are the

light neutrino masses with its CP parities.
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Figure 1. |mee| as a function of the lightest mass m0 (m1 for NH and m3 for IH) for CP parities

K2
νii of the light neutrinos νiL: (+++) (green), (−++) (yellow), (+−+) (blue) and (++−) (red).

Darker colors denotes NH and lighter colors denotes IH. For the latter, light blue and yellow (light

red and green) are largely overlapped. We use the 3-σ allowed ranges for ∆m2
21,∆m

2
31, θ12, θ13 of

ref. [2]. The vertical dashed lines shows the current bound coming from the cosmological data on∑
mi; cf. (3.3).

In figure 1 we show the discrete possibilities for |mee| as a function of the lightest

neutrino mass m0 (m1 for NH and m3 for IH). We vary ∆m2
21, ∆m2

31, θ12, θ13 within

their 3-σ allowed values [2] (θ23 = π/4 is fixed from symmetry). We can see that some

CP parities can be distinguished if independent information on the mass hierarchy and

sufficiently precise information of the absolute mass scale is known. Specially for IH, we

can distinguish between (+ + +)/(+ + −) CP parities for νL and (− + +)/(+ − +). For

NH, some cases can be distinguished for some ranges of the absolute mass scale. For

example the S̃4 (A4 o ZCP
2 ) model of ref. [37] lies in the lower (NH) yellow (−+ +) band.

With enough precision, even in the quasi-degenerate spectrum we can distinguish between

(+++)/(++−) and (−++)/(+−+) CP parities. Notice that some bands would completely

overlap in the m0 → 0 limit. Regions similar to the ones we show here can be seen, in the

general phenomenological analysis of ref. [59] (see its figure 2 with dashed curves denoted

as (±±)), but without the underlying symmetry discussion. Note that this predictions for

neutrinoless double beta decay is the same as for the strictly CP conserving case at low

energies but in our case the Dirac CP phase is maximal instead of being 0 or π, a fact that

can be distinguished in future oscillation experiments.

Also shown in figure 1 are the cosmological bounds for m0,

NH : m0 = m1 < 0.0716 eV ,

IH : m0 = m3 < 0.0665 eV .
(3.3)

These values are obtained from the cosmological bound of
∑
mi < 0.23 at 95% C.L.

reported by the Planck collaboration [60] when 3-σ range of ∆m2
21 and ∆m2

31 are considered.
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4 Leptogenesis

Neutrino mass mechanisms are widely considered to have a connection to the origin of

matter via leptogenesis [61–63]. In this section, we discuss this in the class of models we

are discussing here. The first consideration of leptogenesis with CPµτ symmetry was made

in [33]. The authors concluded that leptogenesis is not possible because CPµτ invariance

of the neutrino sector ensured that all elements (λλ†)2
ij were real leading to vanishing

CP asymmetry, with λ being the NR Yukawa coupling in the basis where the RHNs are

mass eigenstates. Such a conclusion, however, is only valid for the case where the heavy

neutrinos are hierarchical and charged lepton flavor effects are unimportant (the so-called

one-flavor approximation), i.e., for T ∼ M1 & 1012GeV, where M1 is the mass of the

lightest right-handed neutrino. Below that temperature, the tau lepton enters into thermal

equilibrium due to its Yukawa interaction with τR and flavor effects must be considered

(the so called flavored leptogenesis [64, 65]). We will see that successful leptogenesis is

possible even with CPµτ symmetry in the intermediate range 109GeV . M1 . 1012GeV

if flavor effects are taken into account. Therefore, we do not need small CPµτ breaking

for successful leptogenesis as in ref. [56]. Surprisingly, CPµτ symmetry seems to preclude

successful leptogenesis for M1 . 109GeV for hierarchical heavy right-handed neutrinos

because both τ and µ flavors are in thermal equilibrium; see section 4.1. This result

holds even if the resonant enhancement of CP asymmetries due to quasi-degenerate heavy

right-handed neutrinos are considered; see section 4.2.

To prove our assertion, let us first review the consequences of CPµτ on the quantities

relevant for leptogenesis. It is clear from the form of Uν in (2.7) that CPµτ implies the CP

property

XU∗ν = UνK
2
ν or U∗ν = X†UνK

2
ν . (4.1)

This can be also generically inferred from the relation (2.2). As can be checked explicitly in

the CP-basis, K2
ν corresponds to the CP parities of νiL considering CPµτ is conserved in the

neutrino sector. A similar relation is also valid for UR, the matrix that diagonalizes MR:

U∗R = XURK
2
R and UR = U

(0)
R KR . (4.2)

Note that the previous relation assumes MR is in the symmetry basis. We also assume the

charged lepton mass matrix (squared) is diagonal (flavor basis) so that the PMNS matrix

is U = Uν .

Let us write the type-I seesaw Lagrangian in the form

−L = yαL̄αHlαR + N̄iRλiαH̃
†Lα +MiN̄iRN

c
iR , (4.3)

where the sum of repeated indices is implicit. In this basis, the CP asymmetries depend

only on λ and the heavy masses Mi.

In the symmetry basis, λsym obeys

X†λsymX = λ∗sym . (4.4)

In the basis of (4.3), we have

λ = U †Rλsym , (4.5)

– 6 –
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and it obeys

λ∗ = K2
RλX . (4.6)

4.1 Hierarchical heavy neutrinos

We can see the consequences of CPµτ on leptogenesis for the case where the right-handed

neutrinos NiR have hierarchical masses and only the decay of lightest state N1 is relevant

for leptogenesis. Our discussion, however, apply also to cases where the hierarchy is mild.

In our notation, the flavored CP asymmetries for the decay N1 → lα + φ, α = e, µ, τ , read

(see e.g. [61–63])

εα =
1

8π(λλ†)11

∑
j 6=1

{
Im

[(
λλ†
)
j1
λjαλ

∗
1α

]
g(xj)

+ Im

[(
λλ†
)

1j
λjαλ

∗
1α

]
1

1− xj

}
,

(4.7)

where xj ≡M2
j /M

2
1 and

g(x) ≡
√
x

[
1

1− x
+ 1− (1 + x) ln

(
1 + x

x

)]
≡
√
x

1− x
+ f(x) , (4.8)

where f(x) is the vertex function. The part proportional to f(x) corresponds to the one-

loop vertex contribution while the rest corresponds to the self-energy contribution for NR.

We are assuming that NiR masses are hierarchical, i.e., M3 −M1 > M2 −M1 � Γ1. We

comment on the possibility of resonant enhancement in section 4.2.

Now if we apply the symmetry properties (4.6) of λ in (4.7), we conclude that

εe = 0 , εµ = −ετ . (4.9)

For example, note that λ∗jµ = K2
Rjjλjτ and K4

Rjj = 1 for all j. The CPµτ symmetry also

relates the µ and τ washout parameters as

m̃µ = m̃τ , (4.10)

where

m̃α ≡
|λ1α|2v2

M1
, (4.11)

and v = 174GeV in the SM; they quantify the strength of N1 decay and also its inverse

decays into Lα. Therefore, it is clear that the CP asymmetries for the N1 decaying into

all flavors,

ε(1) = εe + εµ + ετ , (4.12)

is vanishing and leptogenesis at the high scale T ∼M1 & 1012GeV can not proceed.

When M1 . 1012GeV, the tau Yukawa interactions enter in equilibrium (also the

muon flavor below 109GeV) and distinct leptonic flavors may contribute differently to

leptogenesis. In this case, the residual baryon asymmetry can be written as [61–65]

Y∆B '
12

37
Y eq
N1

∑
α

εαηα , (4.13)

– 7 –
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where the sum over α is performed only over the flavors that can be resolved by interactions

at the period of leptogenesis (one, two or three flavors). The quantity Y eq
N1

is the thermal

density of N1 per total entropy density and is given by Y eq
N1

= 135ζ(3)
4π4g∗

≈ 3.9× 10−3 , where

the last numerical value is for the SM degrees of freedom below the N1 mass (g∗ = 106.75).

The factor 12/37 corresponds to the reduction of asymmetry in ∆α = B/3− Lα to B− L in

the SM due to spharelons .1

When 109 . M1 . 1012GeV only the τ Yukawa interactions are in equilibrium and

then only the τ flavor and its orthogonal combination are resolved by interactions. In this

case, the asymmetry in (4.13) can be approximated by

YB '
12

37
× Y eq

N1
×
[
ε2η

(
417

589
m̃2

)
+ ετη

(
390

589
m̃τ

)]
, (4.14)

where ε2 = εe + εµ, m̃2 = m̃e + m̃µ, and

η(m̃α) '

((
m̃α

2.1m∗

)−1

+

(
m∗/2

m̃α

)−1.16
)−1

. (4.15)

The mass m∗ ≡ 16π2v2u
3Mpl

√
g∗π
5 ≈ 1 meV quantifies the expansion rate of the Universe. The

factors 417/589 and 390/589 correspond to the diagonal entries of the A matrix and quan-

tifies the effects of flavor in the washout processes when changing from the asymmetry

in lepton doublets to asymmetries in ∆α, see e.g. [61–63]. We can see that the proper-

ties (4.9) of CPµτ leads to a partial cancellation of the baryon asymmetry in (4.14) but it

is nonzero because the τ flavor and its orthogonal combination are washed out differently.

The question is then quantitative. We show some cases leading to successful leptogenesis

in section 4.3.

For M1 . 109GeV, the µ Yukawa interactions are also fast enough so that the three

flavors can be resolved. For such a low scale, the CP asymmetries are usually too small

to lead to a successful leptogenesis. In the CPµτ symmetric case, the baryon asymme-

try is in fact vanishing. With the three flavors resolved, the baryon asymmetry can be

approximated by

YB '
12

37
× Y eq

N1
×
[
εeη

(
151

179
m̃e

)
+ εµη

(
344

537
m̃µ

)
+ ετη

(
344

537
m̃τ

)]
. (4.16)

Due to the properties (4.9) and (4.10), the baryon asymmetry vanishes within this analytic

approximation. Note that this is true even for mild hierarchies for Mi and the leptogenesis

scale cannot be lowered by tuning the values of the masses.

Therefore, as long as CPµτ symmetry is valid at the leptogenesis scale, the only temper-

ature range for which leptogenesis might be viable for hierarchical NiR is the intermediate

scale T ∼M1 where

109GeV .M1 . 1012GeV . (4.17)

It is worth emphasizing that CP violation in our case comes from maximal Dirac CP

phase of the low-energy sector thereby giving a symmetry setting for some scenarios of

1For the case of two Higgs doublets, this factor is 10/31 but numerically very close.
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leptogenesis driven by low-scale CP violation [5–8]. All these properties follow from the

Gl conservation in the charged lepton sector and CPµτ conservation of the neutrino sector;

see section 5.

4.2 Resonant leptogenesis

For the usual type-I seesaw scenario, the CP asymmetry produced by N1 decay usually

decreases as we lower the mass of N1 since the Yukawa couplings decrease and also the

washout effects get stronger. For M1 � 109GeV, successful leptogenesis is not possible for

hierarchical NiR. However, when some of the masses, say M1 and M2, are quasi-degenerate,

it is possible to resonantly enhance the CP asymmetry leading to the resonant leptogenesis

scenario [66]. In fact, (4.7) is singular in that limit because perturbation theory breaks

down. We can regulate such a behavior by resummation methods [66]. We will see in the

following that CPµτ still leads to (4.9) and it largely suppresses the CP asymmetries if µ

and τ flavors have equal washout strengths.

Suppose M3 �M2 ≈M1 and also the resonant condition

M2 −M1 ∼ Γ1,2 �M1,2 . (4.18)

The resummed flavored CP asymmetry for N1 → Lα + φ, neglecting M3 and vertex con-

tributions, can be approximated by [66] (see also [67])

ε(1)
α ≈ f12

reg

Im
[
(λλ†)21λ

∗
1αλ2α

]
+ M1

M2
Im
[
(λλ†)12λ

∗
1αλ2α

]
(λλ†)11(λλ†)11

, (4.19)

where

f12
reg ≡

(
M2

1 −M2
2

)
M1Γ

(0)
2(

M2
1 −M2

2

)2
+
(
M1Γ

(0)
2

)2 . (4.20)

One can see that (4.19) is a regulated version of (4.7), neglecting the contribution of f(x)

(vertex) and regulating the function
√
x2/(1− x2) by f12

reg. See [67] for a discussion about

other regulator functions used in the literature. The N2 decay is also resonantly enhanced as

ε(2)
α ≈ ε(1)

α . (4.21)

Thus with appropriate λ we can have an enhanced CP asymmetry of order one compared

to ε ∼ 10−6 required for successful leptogenesis in the conventional case.

Now, since the Yukawa structure in (4.19) is the same as in the hierarchical case (4.7),

the consequences of CPµτ are the same: the flavored CP asymmetries ε
(1)
α , ε

(2)
α obey (4.9).

Therefore, if the effects of washout for µ and τ flavors are the same, the CP asymmetries

for µ and τ will cancel each other precluding leptogenesis even when M1 ∼M2 . 109GeV.

This would be the case in the analytic approximation (4.16) arising from the classical Boltz-

mann equation solutions. However, to properly quantify the baryon asymmetry, including

washout effects, a full flavored and quantum description is necessary and we will not ad-

dress it here. Moreover, when the three right-handed neutrinos are quasi-degenerate, a

more complicated expression holds for the CP asymmetries [67] and it is not clear if the

properties (4.9) will still hold.

– 9 –



J
H
E
P
0
8
(
2
0
1
5
)
0
9
2

4.3 Quantitative analysis and N3 decoupled case

To assess quantitatively if leptogenesis can be successful with GF = Gl×Gν symmetry, we

can use the Casas-Ibarra parametrization that uses a complex orthogonal matrix R:

R = M̂
−1/2
R (λv)UνM̂

−1/2
ν , (4.22)

where the hatted matrices correspond to the diagonalized matrices and λ is in the basis (4.3).

We can see that the CPµτ symmetry implies

R∗ = K2
RRK

2
ν . (4.23)

This means that there is no CP violating effect coming from R when there is CPµτ sym-

metry. A similar result was found for usual CP symmetry in [5–8]. CP invariance in R is

more apparent if we eliminate the potential purely imaginary i factors as in

R = K∗RR
(0)Kν . (4.24)

where R(0) is a real matrix, as can be seen from the properties of R. Therefore, R(0) obeys

R(0)TK2
RR

(0) = K2
ν , R(0)K2

νR
(0)T = K2

R . (4.25)

This is just the defining relation for a real orthogonal matrix when K2
R = K2

ν = 1 or a

real hyperbolic2 R(0) in O(2,1), when K2
R = K2

ν = diag(−1, 1, 1) or any independently

permuted diagonal entries for K2
R or K2

ν . There is no other possibility and we conclude

that the CP parities of νiL (NiR) are either all equal or only one is different.

When Mi are hierarchical, the flavored CP asymmetries in (4.7) can be approximated

to [5–8, 61–63]

εα = − 3M1

16πv2

Im
{∑

ij
√
mimjmjR1iR1jU

∗
αiUαj

}
∑

jmj |R1j |2
, (4.26)

where M1 �M2,M3 is assumed. One can check (4.12) also in this form from the properties

for R and Uαj in eqs. (4.1) and (4.24). Hence we only need ετ .

If we eliminate the CP parities Kν ,KR, we obtain

ετ = − 3M ′1
16πv2

∑
ij
√
mimjm

′
jR

(0)
1i R

(0)
1j Im

{
U

(0)
τi

∗
U

(0)
τj

}
∑

jmj

(
R

(0)
1j

)2 , (4.27)

where M ′1 = (KR)2
11M1 ≡ ±M1 and m′j ≡ (Kν)2

jjmj = ±mj are the masses including the

CP parities. We can simplify further as

ετ =
3M ′1

16πv2m̃

JCP
|Ue1Ue2Ue3|

{
B12R

(0)
11 R

(0)
12 −B13R

(0)
11 R

(0)
13 +B23R

(0)
12 R

(0)
13

}
, (4.28)

2Lorentz transformations in 2+1 dimensions.
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where

Bij ≡
√
mimj

(
m′j −m′i

)
|Uek| ,

m̃ ≡
∑
α

m̃α =
∑
j

mj |R1j |2 =
∑
α

∑
ij

√
mimjR

(0)
1i R

(0)
1j Re

(
U

(0)
αi

∗
U

(0)
αj

)
, (4.29)

with (ijk) = (123) or permutations and JCP is the Jarlskog invariant

JCP ≡ Im
[
Ue1Uµ2U

∗
e2U

∗
µ1

]
. (4.30)

To obtain (4.28), we have multiplied and divided by U
(0)
11 U

(0)
12 U

(0)
13 = |U11U12U13| and in-

cluded the appropriate factors inside the imaginary part. Notice that we are assuming

CPµτ and (2.5). We also used the fact that the Jarlskog invariant can be written in terms

of different entries of U .

In the standard parametrization, the Jarlskog invariant is

JCP =
(
s13c

2
13

)
(s12c12)(s23c23) sin δCP . (4.31)

Therefore, in the CPµτ symmetric case, we obtain

JCP
|Ue1Ue2Ue3|

= ±1

2
, (4.32)

for δCP = ±π/2, respectively [32]. We can see from (4.28) that ετ depends only on the

low-energy CP violation coming from JCP. Other than that, ετ only depends on the three

R
(0)
1i , on the absolute neutrino scale and the discrete choice of νiL CP parities.

We can finally use YB in (4.14), ετ in (4.28) and m̃α in (4.29) to calculate the baryon

asymmetry produced by leptogenesis using the Casas-Ibarra parametrization. To simplify

the numerical study even further, we employ the approximation where M3 � M1,2 and

N3R decouples. In that case, the R matrix can be written as [68]

NH: R =

0 ? ?

0 ? ?

1 0 0

 , m1 → 0 ,

IH: R =

? ? 0

? ? 0

0 0 1

 , m3 → 0 .

(4.33)

Then we can denote the different cases of CP parities for NiR and νiL as in table 1. In the

decoupling limit, when R is not real, we only have the cases [cf. (4.25)]

NH: (31), (12), (13), (21), (23) ;

IH: (33), (11), (12), (21), (22) .
(4.34)

Note that, differently from the strength of double beta decay, leptogenesis also depends on

the CP parities of the heavy right-handed neutrinos.
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Case KR Kν R(0)

(00) 13 13 O(3)

(jk) (KR)jj = i (Kν)kk = i O(2,1)

Table 1. Possibilities for KR,Kν and R(0). In cases (jk), j, k = 1, 2, 3, KR,Kν have only one

different diagonal entry as diag(i, 1, 1) or any permuted diagonal entries.

We show our results for leptogenesis induced by hierarchical NiR and decoupled N3R

in figures 2 and 3. We use the maximum possible value for M1 within flavored leptogenesis

with τ -flavor in equilibrium: M1 = 1012GeV. Given the parametrization in (4.26) (M1 only

appears linearly in the prefactor), lowering M1 leads to proportional lowering of ετ and also

|YB|. Plots with smaller M1 can be obtained by scaling down the lines proportionally. Note

that θ23 = 45◦ (and δCP = ±π/2) is fixed from symmetry and this makes the curves of |YB|
smoother, with less possibility of cancellations.

Let us begin with figure 2, left. We treat the case where all CP parities are equal for

light and heavy neutrinos, i.e., cases (00)-NH and (00)-IH, and the figure shows the ratio of

the baryon asymmetry of the model over its experimental value, YB/YBexp, in terms of R12.

Since the third N3R decouples, the same plots also applies to the case where the CP parity

of N3R is different from the rest, i.e., KR = diag(1, 1, i). The property in (4.25) requires

that we are only left with the cases (31)-NH [same as (00)-NH] and (33)-IH [same as (00)-

IH]. Thus successful leptogenesis can happen for normal hierarchy [(00)-NH and (31)-NH]

but not for the inverted hierarchy [(00)-IH and (33)-IH]. For normal hierarchy, we can read

from the plot that the scale of M1 can be lowered at most by a factor |YB|max/YBexp = 15.3

and we need 0.65 × 1011 . M1 . 1012GeV. A similar situation of leptogenesis induced

solely by δCP was also considered in ref. [5–7][For a further discussion on this issue, see 8].

Here we furnish a symmetry justification for that case.

In figure 2, right, the remaining cases for NH are considered, i.e., (12)/(23) and

(13)/(22). We show the ratio |YB|/YBexp in terms of ξ, which parametrizes the nonzero R1i.

The cases (12) and (23) [(13) and (22)] are represented by the same blue (green) curve. We

can see that the cases (13)-NH and (22)-NH do not lead to successful leptogenesis. For (12)-

NH and (23)-NH, successful leptogenesis is also possible for 0.5 × 1011 . M1 . 1012GeV

(|YB|max/YBexp = 20.2).

Finally, figure 3 shows the remaining cases for IH: (11)/(12) and (12)/(22). We show

again the ratio |YB|/YBexp in terms of ξ, which parametrizes the nonzero R1i. In all

cases leptogenesis is possible for slightly different ranges for M1. For (11)/(21), we need

0.44 × 1011 . M1 . 1012GeV (|YB|max/YBexp = 22.8). For (12)/(22), 2.3 × 1011 . M1 .
1012GeV (|YB|max/YBexp = 4.4). If we assume negative δCP, preferred from global fits [1, 2],

then the range for case (11)/(21) shrinks almost to the single value M1 ≈ 1012GeV because

the right portion of the curve leads to anti-matter dominance instead of matter dominance;

see figure.

We conclude that successful leptogenesis is not possible for the cases (00)-IH, (33)-IH,

(13)-NH and (22)-NH. Therefore, for IH, successful leptogenesis requires that the CP parity
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Figure 2. Left : ratio of |YB | over YBexp = 8.75× 10−11 as a function of R12 for M1 = 1012GeV in

the N3R decoupling limit; the blue curve corresponds to both (00)-NH and (31)-NH, with R11 = 0,

|R12|2 + |R13|2 = 1 and R13 > 0, while the green curve corresponds to both (00)-IH and (33)-IH,

with R13 = 0, |R11|2 + |R12|2 = 1 and R11 > 0. Right : ratio of |YB | over YBexp, for M1 = 1012GeV

and in the N3R decoupled limit, as a function of ξ in R1i = (0, cosh ξ,−i sinh ξ) for (12)-NH (blue)

and R1i = (0,−i sinh ξ, cosh ξ) for (13)-NH (green); the blue (green) curve also describes the case

(23)-NH [(22)-NH], with R12, R13 exchanged and ξ → −ξ. We use the best-fit values of ref. [2] for

θ12, θ13 and the squared mass differences. The solid curves correspond to YB > 0 for δCP = −90◦

(preferred, cf. [1, 2]) while the dashed curves correpond to YB > 0 for δCP = 90◦.

Figure 3. Ratio of |YB | over YBexp = 8.75 × 10−11 as a function of ξ for M1 = 1012GeV in

the N3R decoupling limit; ξ is defined by R1i = (cosh ξ,−i sinh ξ, 0) for (11)-IH (blue) and R1i =

(−i sinh ξ, cosh ξ, 0) for (12)-IH (green); the blue (green) also describes the case (21)-IH [(22)-IH],

with R12, R13 exchanged and ξ → −ξ. The solid curves correspond to YB > 0 for δCP = −90◦

(preferred, cf. [1, 2]) while the dashed curves correpond to YB > 0 for δCP = 90◦.
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of ν1L or ν2L be different of the rest. On the other hand, the cases (00)-IH and (33)-IH

correspond to the largest value of |mee| in figure 1. If this value of |mee| were measured

in future experiments, then CPµτ symmetric leptogenesis with hierarchical right-handed

neutrinos and decoupled N3R is excluded as the origin of the present baryon asymmetry of

the Universe.

5 Symmetry choice and properties

We now turn to a theoretical discussion of CPµτ symmetry and follow it up in the subsequent

section with a model realization. As already noted, a much pursued idea in the neutrino

literature is that flavor symmetries may be behind the structure of masses and mixing angles

of the leptons [9, 10]. A very predictive setting consists of assuming that the charged lepton

sector and neutrino sectors are invariant under different groups Gl and Gν , respectively.

These groups are then part of a larger group GF that may be entirely or partially valid at

higher energies (the latter if some factor appears accidentally). A less ambitious variations

of the above idea is (i) to allow more free parameters by requiring less symmetry for Gν
or Gl or (ii) including generalized CP (GCP) symmetries as part of the flavor group. Here

we pursue a direction where we identify a minimal setting with Gl being abelian and Gν
being a GCP transformation. We find that we are largely restricted to CPµτ for Gν .

To discuss our strategy, we assume Majorana neutrinos, with the leptonic Lagrangian

below EWSB in the flavor basis to be

− L = mα l̄αLlαR + νcαL(Mν)αβνβL + h.c. , (5.1)

where the implicit sum over α = e, µ, τ is understood. Note that in the flavor basis, the

interaction with W gauge bosons is diagonal, Wµ l̄αLγ
µναL, and the PMNS matrix comes

from the diagonalization of Mν .

It is clear that the charged lepton part of (5.1) is invariant under three separate family

lepton numbers Le, Lµ, Lτ , that should be broken in the neutrino part. Although these

symmetries are automatically present whenever we diagonalize the charged lepton mass

matrix [69], we assume some subgroup of it, Gl, is a symmetry of the theory at higher

scales for the charged lepton sector (we allow for the fact that it may be accidental). Since

charged leptons and left-handed neutrinos come from the same leptonic doublet Lα above

the EW scale, the group Gν should also act on the same space. Let us look for the minimal

Gl and Gν where the former is abelian and the latter is a GCP.

We assume Gl has a generic element acting on Lα = (lαL, ναL) of the form (more

generic forms are considered in appendix A)

Gl : T =

1

eiθ

e−iθ

 . (5.2)

For the moment, Gl can be a continuous U(1) group (which can therefore be the group

U(1)µ−τ of Lµ − Lτ ) or a discrete abelian group Zn, with n ≥ 3 to avoid degenerate T .
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We are in the basis where TL = TlR = T act all in the same way on left-handed doublets

and right-handed singlets but they can be in different irreducible representations (irreps)

if T is embedded in a larger group. In this case, Gl will refer to the group acting on the

left-handed doublets Lα.

Next, we assume the symmetry of the neutrino sector of (5.1), Gν , is composed of a

generalized CP (GCP) symmetry [70, 71] of the form

Gν : L(x)→ XLCP(x̂) , (5.3)

where LCP = −iCL∗ is the usual CP transformation and X is a generic 3 × 3 unitary

and symmetric matrix acting in the space of three families; x̂ is the space inversion of x.

Symmetric X guarantee that the application of (5.3) two times, leads to the identity. Note

that a global rephasing is unimportant for X.

Now we demand that Gl and Gν close as a group acting on Lα. If Gl,ν were unitary

and we demanded that the product of its generators be finite, we would obtain von Dyck

groups that were extensively studied in this context [72, 73].3 Instead, (5.3) is a GCP

symmetry and we should demand that the following composition of Gν and Gl induce an

automorphism [39]:

XT ∗X† = T ′ ∈ Gl . (5.4)

where T, T ′ are elements of the same group. This equation can be rewritten as

X = T ′XTT ∈ Gl . (5.5)

This equation and the previous one are not restricted to diagonal T but are valid for any

unitary T in any basis.

If Gl = U(1), irrespective of the form in eq.(5.2), there are only two possible autor-

morphisms:

(i) T ′ = T−1 or (ii) T ′ = T . (5.6)

These are also automorphisms for all subgroups Zn and, in particular, for n = 3, 4, they

are the only ones. For general Zn, with n 6= 3, 4, additional automorphisms T ′ = T k are

possible but not with the form (5.2). For these automorphisms, (5.5) and the form of T

in (5.2) leads to

(i) X =

1

1

1

 or (ii) X =

1 0 0

0 0 1

0 1 0

 , (5.7)

after rephasing some fields appropriately. The first case is just usual CP transformation

and we can see that the charged lepton part of (5.1) is automatically invariant under such a

transformation, thus leading to CP invariance in the whole theory. This symmetry prevents

CP violation in the leptonic sector and hence we consider it no further. Instead we focus on

the second case which we will denote as CPµτ and it is a well-known GCP symmetry in the

literature called µτ -reflection symmetry [32–34]. CP breaking arises in this setting because

3For a different approach based on Z2 × Z2, see [74, 75].
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of the clash between the neutrino part and the charged lepton part in (5.1): the former

is invariant under CPµτ while the latter is invariant under the usual CP (after rephasing).

What distinguishes our work from the previous ones is that in previous works on CPµτ ,

neither the symmetry Gl was identified nor its relation with Gν was stressed as we do here.

Also, in later approaches using GCP symmetry with finite flavor symmetries, much more

complicated automorphism structures (compared to ours) needed to be studied for some

groups [33, 37–51].

In fact, this settings is much more general: the two forms for X in (5.7) are unique

for any diagonal T and the form for T in (5.2) is also unique for Gl = U(1) or Gl = Zn
with prime n or n = 4, 6. The uniqueness is up to simultaneous permutations of rows and

columns that leaves T diagonal. This result is proved in appendix A, where we also show

the first different form for T — it occurs for Z8.

Permutations of the above structure can be discarded for phenomenological reasons as

follows. If we adopt T with nontrivial entries in (11)-(22) [or (11)-(33)], the structure of

X would also be interchanged and we obtain the relations |Ue3| = |Uµ3| (or |Ue3| = |Uτ3|),
which leads (respectively) to

CPeµ : tan θ13 = sin θ23 ,

CPeτ : tan θ13 = cos θ23 .
(5.8)

These relations are completely excluded because of small θ13.

At last, we point out a remarkable property of the symmetries Gl generated by T and

Gν = ZCP
2 generated by CPµτ : the two groups commute.4 Therefore, our minimal flavor

group, including GCP, can be just GF = Gl ×Gν .5 Generically, when GF is a subgroup of

U(3), Gl ∼ Zn and Gν ∼ Z2 × Z2 (or subgroup), their commutation is impossible because

all mixing angles are nonzero. For that reason, the whole group containing Gl and Gν
tends to be a large nonabelian group. For example, the minimal group that leads to TBM

is S4 [76, 77] of order 24. To fix at least the nonzero θ13, it must be much larger of order

150 or more [78–82].

The commutation of Gl and Gν seems to have another remarkable feature, i.e., the

vev alignment problem6 often encountered in flavor symmetry model building — can be

naturally avoided in the scalar sector (without supersymmetry) as our examples below

show. The solution is simply that Gl (Gν) can be broken in the neutrino sector (charged

lepton sector) preserving Gν (Gl) by using Gν-invariant (Gl-invariant) fields with Gl (Gν)

charge. Hence, only complete invariants of both Gl and Gν interact in the potential. Thus

to avoid the contamination of Gl-breaking effects in the neutrino sector, we just need to

avoid the coupling of Gl breaking scalars to neutrino fields (be it by additional symmetries).

The same is valid for the charged lepton sector.7

4This property is more transparent in the basis where Gl, in the continous case, is represented by SO(2)

rather than U(1) and CPµτ is represented by usual CP which commutes; see appendix B.
5Obviously CPµτ may not commute with other symmetries such as the SM gauge group.
6This name is not entirely appropriate in our context (we use one-dimensional irreps, see also appendix B)

and we specifically refer here to the possibility of different symmetry breaking scalars interacting through

the potential.
7To see the advantage of our discussion relative to other flavor groups, we can compare our setting with

those based on A4 = (Z2 × Z2) o Z3 group. We can take Gl ' Z3 and Gν ' Z2 and note that they do not
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6 Model

The main challenge in model building with CPµτ , is to keep it unbroken in the neutrino

sector while breaking it sufficiently in the charged lepton sector (keeping Gl) to generate

µ-τ mass splitting. We have found several ways to meet this challenge. Although our

general setting can be implemented in many different ways, some distinction is possible on

how Gl appears and how Gν (GCP) is broken in the charged lepton sector. The different

possibilities depend on how Gl appears, i.e., either

• Gl comes from a symmetry of the whole theory GF at high scales; or

• Gl appears accidentally.

In section 5, we saw that the largest group for abelian Gl is Gl = U(1)µ−τ , which is the

continuous symmetry of the combination Lµ−Lτ . Variations on this respect involve gauging

U(1)µ−τ or considering only a Zn subgroup of it. The latter would allow embedding our

Gl × Gν into a larger nonabelian discrete group. Either way, we use the nomenclature of

U(1)µ−τ to describe our models and only make some comments on variants.

Furthermore, our setting requires that only Gl be broken in the neutrino sector and

only Gν be broken in the charged lepton sector — the conservation of Gl and Gν in the

complementary sectors is what leads to predictions. That is achieved through the vacuum

expectation value of scalars that we call as l-flavons and ν-flavons. They have the following

properties:

• l-flavons: all conserve Gl but some need to break Gν . Best candidate is a Gl invariant

CPµτ odd scalar (we denote it as σ).

• ν-flavons: all conserve Gν but some need to break Gl. Best candidates are scalars

carrying Gl charge but CPµτ even (Gν-invariant); we denote them as η’s.

Since the alignment problem in the scalar potential can be avoided, we just need to prevent

l-flavons (ν-flavons) to couple to the neutrino sector (charged lepton sector). Often that

can be achieved by additional symmetries.

One remark with respect to additional symmetries of flavons is in order. For the above

setting, it is simpler if flavons do not carry other additive quantum numbers other than

those of Gl or Gν . For example, let us consider a ν-flavon η2 carrying Lµ − Lτ = 2 (Gl) so

that it couples with N3 as N2
3Rη2. If η2 carries no other quantum number, we can define

its CPµτ transformation as8

CPµτ : η2(x)→ η2(x̂) , (6.1)

commute. In this case, Gν invariant fields with Gl charge exist: take the 1′ or 1′′ singlets (in actual models,

additional flavons are necessary to partly break Z2 × Z2 of A4). However, there is no irrep with Gν charge

but without Gl charge in A4. In actual A4 models, usually triplets 3 with specifically aligned vevs are used

to achieve the breaking GF → Gl in the charged lepton sector (and also in the neutrino sector, hence the

alignment problem).
8This possibility is raised for general discrete nonabelian symmetries in [39] but no model application

was discussed.
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i.e., η2 is composed of two CP even real scalars. However, if η2 also carries B − L = −2,

and NiR carries B− L = −1, then its N3 coupling transform as

CPµτ : N3RN3Rη2 → N cp
2RN

cp
2Rη2 , (6.2)

which maps a B− L invariant term to a B− L violating term. In this case, consistency with

CPµτ requires the existence of another field η−2 with charges Lµ−Lτ = −2 and B−L = −2.

The transformation property now would be

CPµτ : η2(x)→ η∗−2(x̂) . (6.3)

This corrects the transformation properties for (6.2) but allow CPµτ breaking if |〈η2〉| 6=
|〈η−2〉|. Therefore, in our setting, we require that ν-flavons carry no other additive quantum

number and hence a continuous B− L symmetry cannot be implemented.

The exception to the above feature is when ν-flavons carry only a Z2 quantum number.

In this case, since the representation is real, (6.1) can be maintained. This means that a

Z4 subgroup of U(1)B−L, acting as

ZL4 : leptons ∼ i , ν-flavons ∼ −1 , (6.4)

can still be implemented as a symmetry.

At last, we assume leptogenesis is successful in our setting and we will be seeking high

scale (MR & 1011GeV) type-I seesaw implementations.

6.1 Multi-Higgs implementation

The model below illustrates the general aspects of our setting. In this case, Gl will be

accidental andGν will be broken at a high scale and transmitted to the charged lepton sector

to generate the µτ mass splitting. The symmetries at the high scale will be U(1)µ−τ ×ZCP
2 ,

a gauged U(1)µ−τ (which is not exactly Gl at the low scale) and global CPµτ . Another

implementation where GF = Gl × Gν is a symmetry of the high scale theory is given in

appendix C.

All lepton fields transform alike under U(1)µ−τ , with Lµ − Lτ charges

Li ∼ li ∼ Ni ∼ (0, 1,−1) , (6.5)

where Li, li ≡ liR, Ni ≡ NiR (here we use Li, li instead of Lα, lα) are the three families of

lepton doublets, lepton singlets and right-handed neutrino singlets, respectively. The CPµτ

symmetry also acts similarly for all of the three type of fields, as (5.3) with the second

X in (5.7), and should swap the second with the third family fields. Note that this GCP

symmetry commutes with U(1)µ−τ and it does not reverse its charges. The SM group

charges, however, are reversed by this GCP symmetry.

We add two more Higgs doublets φ±2 with U(1)µ−τ charge ±2 in addition to the SM

doublet φ0. The Lagrangian for the charged lepton sector is

− Ll = y0L̄1φ0l1 + y2L̄2φ2l3 + y−2L̄3φ−2l2 . (6.6)
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We prevent φ0 from coupling to L̄2l2 and L̄3l3 by assigning

Z2 : l2, l3, φ±2 are odd. (6.7)

Such a symmetry also leads to the accidental symmetry

Gl : L2 ∼ l3 ∼ eiθ , L3 ∼ l2 ∼ e−iθ . (6.8)

The Higgs doublets are invariant under this symmetry and so it leaves the symmetry

invariant even after EWSB. It is this symmetry that will correspond to Gl at low energies

and will differ from our original U(1)µ−τ only for liR. The CPµτ acts in the same form for

Gl as it does for U(1)µ−τ .

The CPµτ symmetry acts on the doublets as

φ0 → φ∗0 , φ2 → φ∗−2 . (6.9)

This implies y0 is real and y∗−2 = y2.

If we write

〈φ(0)
−2〉 = v−2 and 〈φ(0)

2 〉 = v2 , (6.10)

the CPµτ breaking will come from

|v−2| � |v2| , (6.11)

which induces the µτ mass splitting

mµ = |y2v2| � mτ = |y−2v−2| . (6.12)

Note that prior to EWSB CPµτ renders µτ flavors indistinguishable and the |v−2| � |v2|
leads physically to the same situation. The CPµτ breaking in (6.11) will be induced by a

large vev of a CP odd scalar σ in the potential [83].

The Higgs potential is

V2 = µ2

(
|φ2|2 + |φ−2|2

)
+ µ0|φ0|2 ,

V4 =
1

2
λ0|φ0|4 +

1

2
λ1

(
|φ2|2 + |φ−2|2

)2
+ λ2|φ2|2|φ−2|2

+ λ22

(
φ†0φ2φ

†
0φ−2 + h.c.

)
+ λ02|φ0|2

(
|φ2|2 + |φ−2|2

)
+ λ′02

(
|φ†0φ2|2 + |φ†0φ−2|2

)
,

δV = µσσ
(
|φ2|2 − |φ−2|2

)
+
(
λ−4φ

†
2φ−2η

2
2 + h.c.

)
(6.13)

where σ is a CP odd scalar and η2 is a CP-even scalar with U(1)µ−τ charge 2 and will

couple to N2
2 , N

2
3 . We have omitted a term similar to the λ2-term because only neutral

vevs are sought and they are not relevant to the discussion below. We could also replace

U(1)µ−τ by Z8 by adding the terms (φ†2φ−2)2.

After σ and η2 acquire vevs at the high scale, we get from δV and V2 an effective

quadratic term for φ±2,

V2eff = M2
2 |φ2|2 +M2

−2|φ−2|2 +M2
22φ
†
2φ−2 + h.c., (6.14)
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where

M2
2 = µ2 + µσ〈σ〉 , M2

−2 = µ2 − µσ〈σ〉 , M2
22 = λ−4〈η2〉2 . (6.15)

Irrespective of the phases of λ−4, 〈η2〉, we apply rephasing transformations so that M2
22 is

real and negative.

Now we adjust 〈σ〉 so that |M2
2 | ' ε−1|M2

22| ' ε−2|M2
−2| ∼ vew. The phases of the

vevs are trivial in the minimum when λ22 < 0. This leads to a high scale mass matrix for

(φ−2, φ2) of the form:

M2
φ = M2

2

(
ε2 ∼ ε
∼ ε 1

)
(6.16)

The two approximate eigenvectors of this matrix are: H ′ ≈ φ2 + εφ−2 and h0 ≈ φ−2− εφ2.

By fine tuning we keep ε ∼ mµ
mτ

and H ′ as superheavy whereas h0 mass is negative and weak

scale. Then below the scale of 〈η〉 and 〈σ〉, the effective charged lepton Yukawa couplings

in (6.6) look like:

− Lleff ' y0L̄1φ0l1 + y2εL̄2h0l3 + y∗2L̄3h0l2 . (6.17)

After a 90◦ rotation of the right-handed charged leptons, this gives mτ = |y∗2〈h
(0)
0 〉| and

mµ = |y2ε〈h(0)
0 〉| as desired for a realistic theory.

For the neutrino sector we add three singlet scalars ηk, k = 0, 1, 2, with U(1)µ−τ charge

k; η0 is a real scalar. When they acquire vevs (for k 6= 0), they break U(1)µ−τ without

breaking CPµτ , as discussed previously, and they transform trivially under CPµτ :

CPµτ : ηk(x)→ ηk(x̂) , (6.18)

where x̂ = (x0,−x) for x = (x0,x). We also assume the symmetry ZL4 in (6.4) where

ηk ∼ −1.

The Lagrangian for N ,

−L ⊃ 1

2
k1N̄1N

c
1η0 + k23N̄2N

c
3η0

+
1

2
k2N̄2N

c
2η2 +

1

2
k3N̄3N

c
3η
∗
2

+ k12N̄1N
c
2η1 + k13N̄1N

c
3η
∗
1 ,

(6.19)

gives rise to MR in the CPµτ symmetric form (2.4) after ηk acquire generic vevs. GCP

symmetry imposes real k1, real k23, k3 = k∗2, k13 = k∗12. Given the necessary structure (2.4)

and the requirement for θ13 6= 0, we indeed need both fields η1,2. Note that ZL4 prevents σ

from coupling to NiR.

It can be seen that CPµτ symmetric MR also leads to a CPµτ symmetric M−1
R . Such a

structure is maintained from the neutrino Dirac mass matrix MD coming from

− L ⊃ f0N̄1φ̃
†
0L1 + f2N̄2φ̃

†
0L2 + f3N̄2φ̃

†
0L3 , (6.20)

where φ0 is the same Higgs doublet that couples to electrons and quarks. The reality of f0

and f3 = f∗2 follow from CPµτ and and we obtain

MD =

xν zν
z∗ν

 . (6.21)
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The neutrino mass matrix given by the seesaw formula [84–88]

Mν = −MT
DM

−1
R MD , (6.22)

is CPµτ invariant and has the form (2.4) as advertised.

The leptogenesis aspects studied in section 4 has to be adapted in this case because

v = 174GeV has to be replaced by vu = v sinβ. The plots shown in figures 2 and 3 apply

now for M1/ sin2 β = 1012GeV and limits for the M1 window changes accordingly.

6.2 Higgs spectrum

At low energies, the scalar sector of this model acts like a lepton-specific (also called type-

X) two Higgs doublet model [89] with the Higgs doublets being h0 and φ0, except for

the Higgs couplings to electrons; cf. (6.17). Both of the doublets acquire vevs such that√
〈φ0〉2 + 〈h0〉2 = v = 174 GeV. The ratio of vevs is given by 〈h0〉/〈φ0〉 = tanβ and

the mixing between the real neutral Higgs fields is denoted by tan α. The effective Higgs

potential in terms of φ0 and h0 is given by:

V (φ0, h0) = − µ2
φ|φ2

0| − µ2
h|h0|2 +

1

2
λ0|φ2

0|2 +
1

2
λ1|h2

0|2

+ λ02|φ0|2|h0|2 + λ′02|φ
†
0h0|2 + λ22ε

(
φ†0h0φ

†
0h0 + h.c.

)
.

(6.23)

The spectrum of Higgs states is given by [90, 91]

m2
A = −4λ22εv

2 , m2
H+ = −

(
λ′02 + 2ελ22

)
v2 , (6.24)

where v = 174 GeV (we use a different normalization compared to [90, 91]), while the mass

matrix for the CP even states, in the basis
√

2(Reh0 − v−2,Reφ0 − v0), is

M2
h,H = 2

(
λ1v

2
−2 λ345v0v−2

λ345v0v−2 λ0v
2
0

)
, (6.25)

where λ345 = λ02 + λ′02 + 2ελ22. We are using 〈h0〉 ≈ 〈φ−2〉 ≈ v−2.

Since our parameter λ22 comes from the high energy theory (decoupled φ2), it can not

be arbitrarily large. If we impose it to be perturbative, |λ22| < 4π we obtain an upper

bound for the pseudoscalar A as

mA = 2v
√
ε|λ22| . 2v

√
4π
mµ

mτ
= 300 GeV , (6.26)

hence non-decoupling. This is smaller than 2mt and tt̄ cannot be produced. Neutral

scalars in the 2HDMs are less constrained than the charged higgsses (e.g. from flavor

observables [92, 93]) and the strongest limits are available for the MSSM (or type-II) [94].

Usually they appear as lower bounds on the heavy masses because the decoupling limit

is usually a good description. Very light pseudoscalars of mass below O(10GeV) can also

have its couplings constrained [94–97]. Current LHC limits for the different types of 2HDM

constrain the various 2HDMs to be close to the alignment limit [For a review and earlier

references, see 98]. Even in this limit, a portion of the parameter space is already excluded.

For example, only tan β & 3 is allowed by data (above 200GeV). Also, being an effective

2HDM, the triple Higgs coupling for the interaction h3 is different from the SM and can

be probed in the future [99].
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7 Summary

We have presented a minimal setting where Gl is conserved in the charged lepton sector

and Gν is conserved in the neutrino sector. The largest Gl can be identified with the

combination Lµ-Lτ symmetry and Gν is generated by a generalized CP symmetry, CPµτ ,

that combines CP with µτ exchange. When Gl is conserved in the charged lepton sector and

Gν is conserved in the neutrino sector, we obtain the usual prediction of maximal θ23 and

δCP with nonzero θ13. Additionally, Majorana phases are fixed up to discrete choices and

they lead to very specific predictions for neutrino-less double beta decay and leptogenesis.

In our setting, the two symmetries Gl and Gν commute and this feature allows us to

naturally avoid the alignment problem in the scalar sector. Additional symmetries can be

used to keep the Gl- and Gν-breaking effects restricted to the neutrino sector and charged

lepton sector, respectively. Additionally, continuous B − L cannot be imposed (hence not

gauged) in our setting and only a Z4 subgroup may be imposed to keep CPµτ naturally

unbroken in the neutrino sector. Our construction also illustrates that generalized CP

symmetries based on the trivial automorphism of flavor groups — much less considered in

the literature — may still lead to interesting model constructions.

For the neutrino-less double beta decay, the discrete choice of Majorana phases (or

CP parities) leads to specific strips that can be clearly distinguished in some cases; see

figure 1. For example, for inverted hierarchy, the case of all equal CP parities or only ν3L

with different CP parity can be distinguished from the rest and can be potentially measured

or falsified in the near future. We emphasize that, key predictions of these models are: (i)

θ23 = 450 and δCP = π/2 simultaneously i.e. if experimentally measured values for either of

these observables deviate from the above predictions, CPµτ violating terms will be necessary

to keep these ideas viable.

The consequences of CPµτ for leptogenesis leads to the natural implementation of the

purely flavored leptogenesis scenario where the total CP asymmetry due to N1 decay is

vanishing. Successful leptogenesis is possible only when flavored leptogenesis is considered

and that must take place at the intermediate temperature range of 109–1012GeV. Flavored

leptogenesis below 109GeV seems to be precluded even if the CP asymmetry is resonantly

enhanced by quasi-degenerate N1R and N2R if the µ- and τ -flavors are washed out equally.

For effective two heavy and hierarchical right-handed neutrinos the window for successful

leptogenesis is even narrower: 5 × 1010–1012GeV.
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A Uniqueness of CPµτ

We show here that the GCP defined by X in (5.7) for the abelian symmetry generated

by T in (5.2) are the only possibilities for any Gl = U(1) or Gl = Zn, with prime n or

n = 4, 6. A different possibility arises only for T (the possibilities for X are the same)

beginning with n = 8. The case of Gl = U(1) was considered in the text. We only need to

consider Gl = Zn.

To show the assertion, we generalize the form of T from (5.2) to

T =

z1

z2

z3

 , (A.1)

where zi are complex number of modulus unity. We also keep det T = z1z2z3 = 1 because

its nontrivial contribution can be factored out to usual lepton number. Let us also consider

more general automorphisms for Zn in (5.5): T ′ = T k where k cannot divide n.

Then the consistency condition (5.5) can be recast in the following form:

zki zj = 1 if Xij 6= 0 . (A.2)

Let us take the first row of X. Because X is nonsingular, at least one element of the first

row has to be nonzero. Suppose two elements are nonzero. If X11 6= 0 and X12 6= 0, then

condition (A.2) implies

zk+1
1 = zk1z2 = 1 , (A.3)

and then z1 = z2 which is impossible because T is nondegenerate. The same conclusion is

reached if any two of the elements of the first row is nonzero. The argument is independent

of the row and hence only one element in each row (or column) can be nonzero. Listing all

possibilities and selecting only the symmetric matrices, the nonzero entries of X coincides

with the positions of the unity in (5.7), after eliminating similar forms that are related by

the simultaneous permutations of rows and columns that keep T diagonal. Rephasing of

fields leads to (5.7). Thus X is restricted to (5.7) except for permutations.

Now, for the first case of X = 1, we reach the conclusion that

zk+1
1 = zk+1

2 = zk+1
3 = 1 . (A.4)

This means T k+1 = 1 and if T is a faithful representation, k + 1 = 0 mod n. Therefore,

k = −1 is the only possibility.

For the second case of X being (23)-transposition, we have the conditions

zk+1
1 = zk2z3 = zk3z2 = 1 . (A.5)

This imposes conditions on z1 and also zk−1
2 = zk−1

3 . For prime n the last relation is only

possible if k = 1: this leads to (5.2) (we exclude z2 = z3). The cases n = 4, 6 do not lead

to different forms because only k = 1 or k = −1 correspond to automorphisms. The cases

so far proves the assertion.
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The first different form appears for Z8 and one example is

T =

−1

ω8

ω3
8

 , (A.6)

which obeys XT ∗X−1 = T 5; ω8 denotes ei2π/8. If we allow X to be nonsymmetric,

other possibilities appear such as for Z7 where X is the cyclic permutation and T =

diag(ω7, ω
2
7, ω

4
7) (the same that appears for the T7 group).

B Gl ×Gν in the real basis

We show here how the CPµτ symmetry of (5.3) and the U(1)µ−τ symmetry of (5.2) are

rewritten in a real basis where CPµτ is just the usual CP transformation. In this basis, the

commutation of CPµτ and U(1)µ−τ is transparent and it also shows how the combination

U(1)µ−τ × ZCP
2 leads effectively to a two-dimensional representation when the fields are

complex, i.e., carrying quantum numbers other than U(1)µ−τ × ZCP
2 .

It is clear that the charged lepton part of (5.1) breaks the CPµτ symmetry strongly as

mτ/mµ ∼ yτ/yµ ∼ 17 (if lα transform similarly to Lα and H transforms as usual). This

breaking can be analyzed in a different basis. Since the matrix X in CPµτ is symmetric,

there is a change of basis where X can be completely removed. We can concentrate in the

µτ space where such a basis change is(
Lµ
Lτ

)
=

1√
2

(
1 −i
1 i

)(
L′µ
L′τ

)
. (B.1)

For the right-handed singlets li we apply the same transformations. The CP transformation

in the new basis will be just the usual

L′i → (−iC)L′∗i , (B.2)

and similarly for li.

The Yukawa coefficients in L̄iYijHlj in the new basis will be just

Y =

ye yµ
yτ

→ Y ′ =

ye ȳ −i∆y/2
i∆y/2 ȳ

 , (B.3)

where ȳ ≡ (yτ + yµ)/2 and ∆y ≡ yτ − yµ. One can see that if yτ 6= y∗µ, CP is violated

because the phases of ȳ and i∆y can not be simultaneously removed [keeping (B.4)] while

in this basis Mν should be a real matrix. For example, if yµ,τ are real CP is violated

by i∆y. The latter term is however still invariant by the following SO(2) without being

proportional to the identity:(
L′µ
L′τ

)
→

(
cos θ sin θ

− sin θ cos θ

)(
L′µ
L′τ

)
, (B.4)
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irrep real basis U(1)µ−τ diagonal

(0,± ) 1-dim real 1-dim real

(q,± ) 2-dim real 1-dim complex

(0,*) 1-dim complex 1-dim complex

(q,*) 2-dim complex 2-dim complex

Table 2. Irreducible representations for U(1)µ−τ × ZCP
2 .

In this basis it is clear that the CP transformation (B.2) commutes with the SO(2) trans-

formation in (B.4).

In this basis it is also clear U(1)µ−τ × ZCP
2 have the irreducible representations shown

in table 2, where (q,±) denotes charge q for U(1)µ−τ and CP parities ± while ∗ denotes

a complex field transforming as φ → φ∗ in the real basis or φq → φ∗−q in the U(1)µ−τ
diagonal basis.

C Single Higgs implementation

In this implementation, the symmetry at the high scale is GF = Gl × Gν where Gl =

U(1)µ−τ (gauged) and Gν = ZCP
2 . At low energy, right above the electroweak scale, we

effectively have the SM with one Higgs doublet.

The neutrino sector is the same as in the multi-Higgs model of section 6.1, with addi-

tional simplification by eliminating η0 and the symmetry ZL4 . If we replace U(1)µ−τ by Z3,

we can simplify further by identifying η1 = η∗2, and we are left with only one ν-flavon.

The charged lepton sector needs to be modified. We still assume CPµτ is spontaneously

broken by a vev of a CP odd scalar, which now we rename as σ−. We also need a CP even

scalar σ+. To confine the CP breaking to the charged lepton sector, we introduce a Z2

symmetry for which

Z2 : σ±, liR are odd, (C.1)

and the rest are even. Both σ± are invariant under U(1)µ−τ . We can write an effective

Lagrangian as

− Lleff =
σe

ΛCP
L̄eHle +

σµ
ΛCP

L̄µHlµ +
στ

ΛCP
L̄τHlτ + h.c. . (C.2)

where σα, α = e, µ, τ are some complex linear combinations of σ±. GCP invariance requires

σe = aeσ+ + ibeσ− ,

σµ = aµσ+ + ibµσ− ,

στ = aτσ+ + ibτσ− ,

(C.3)

where ae, be are real coefficients and aτ = a∗µ, bτ = b∗µ are generally complex. The µτ mass

splitting is generated from

m2
τ −m2

µ

v2
=

1

Λ2
CP

[
|a∗µu+ + ib∗µu−|2 − |aµu+ + ibµu−|2

]
=
u+u−
Λ2
CP

4 Im
(
a∗µbµ

)
, (C.4)
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where 〈σ+〉 = u+ and 〈σ−〉 = u−. We can see that CP breaking, and hence µτ mass

splitting, requires both u± to be nonzero.

One example for a UV completion of (C.2) can be achieved by introducing three heavy

vector-like charged lepton fields EiL and EiR, the latter with the same SM quantum number

of liR. They are charged under U(1)µ−τ just like the rest of the leptons as (6.5) but they

are even under the additional Z2 symmetry of (C.1). The Lagrangian is then

−Ll = y′1L̄1HE1R + y′2L̄2HE2R + y′3L̄3HE3R

+MEiĒiLEiR + σiĒiLli , (C.5)

where y′3 = y′∗2 and σi are some linear combinations of σ± just like (C.3); ME1 is real from

GCP and ME3 = ME2 can be taken real by convention. We obtain (C.2) for the charged

leptons after integrating out the heavy leptons Ei, with the identification

σe
ΛCP

= − y′1
ME1

σ1 ,

σµ
ΛCP

= − y′2
ME2

σ2 ,

στ
ΛCP

= − y′3
ME3

σ3 .

(C.6)

In particular, the electron Yukawa is naturally small for ME1 �ME2 .

We should mention that U(1)µ−τ breaking would be induced in the charged lepton

sector by the additional couplings between Ei and ηk as

−Ll ⊂ µ′12Ē1LE2Rη
∗
1 + µ′13Ē1LE3Rη1

+ µ′21Ē2LE1Rη1 + µ′31Ē1LE3Rη
∗
1

+ µ′23Ē2LE3Rη2 + µ′32Ē3LE2Rη
∗
2 + h.c.,

(C.7)

where µ′32 = µ′∗23, µ′13 = µ′∗12, µ′31 = µ′∗21. However, we can assume that U(1)µ−τ breaking

scale is much smaller than the bare mass terms for Ei as

|〈η1,2〉| �ME2 �ME1 . (C.8)

In this case, the U(1)µ−τ breaking effects can be neglected and (C.2) is effectively obtained

after Ei are integrated out. Since 〈ηk〉 are related to NR masses, more specifically to the

generation of θ12, θ13 and N2, N3 mass splitting, (C.8) means that NR mass scale is much

smaller than the Ei scale. An alternative way of avoiding U(1)µ−τ breaking in the charged

lepton sector would be to use ZL4 .

As for the scale of 〈σ±〉, we should have 〈σ±〉/ME2 & 10−2 for an order one y′3 coupling

in (C.6), and it can lie below or above the U(1)µ−τ breaking scale. Anyhow, σ± does

not couple to NR at renormalizable level due to the Z2 symmetry and CP breaking is not

induced at leading order to the neutrino sector since ηk only couple to CP even combinations

σ2
+ and σ2

−. We assume, however, that all 〈ηk〉, 〈σ±〉, are greater than the scale where

leptogenesis takes place, typically 1011GeV in our case, so that CP breaking in the charged

lepton sector can be manifest.
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[4] W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys.

315 (2005) 305 [hep-ph/0401240] [INSPIRE].

[5] S. Pascoli, S.T. Petcov and A. Riotto, Connecting low energy leptonic CP-violation to

leptogenesis, Phys. Rev. D 75 (2007) 083511 [hep-ph/0609125] [INSPIRE].

[6] S. Pascoli, S.T. Petcov and A. Riotto, Leptogenesis and Low Energy CP-violation in

Neutrino Physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [INSPIRE].

[7] G.C. Branco, R. Gonzalez Felipe and F.R. Joaquim, A new bridge between leptonic

CP-violation and leptogenesis, Phys. Lett. B 645 (2007) 432 [hep-ph/0609297] [INSPIRE].

[8] S. Davidson, J. Garayoa, F. Palorini and N. Rius, Insensitivity of flavoured leptogenesis to

low energy CP-violation, Phys. Rev. Lett. 99 (2007) 161801 [arXiv:0705.1503] [INSPIRE].

[9] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing,

Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

[10] S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog.

Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].

[11] T. Fukuyama and H. Nishiura, Mass matrix of Majorana neutrinos, hep-ph/9702253

[INSPIRE].

[12] R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix,

Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].

[13] E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment and lepton flavor

nonconservation, Phys. Rev. Lett. 87 (2001) 011802 [Erratum ibid. 87 (2001) 159901]

[hep-ph/0102255] [INSPIRE].

[14] C.S. Lam, A 2-3 symmetry in neutrino oscillations, Phys. Lett. B 507 (2001) 214

[hep-ph/0104116] [INSPIRE].

[15] K.R.S. Balaji, W. Grimus and T. Schwetz, The Solar LMA neutrino oscillation solution in

the Zee model, Phys. Lett. B 508 (2001) 301 [hep-ph/0104035] [INSPIRE].

[16] E. Ma, The All purpose neutrino mass matrix, Phys. Rev. D 66 (2002) 117301

[hep-ph/0207352] [INSPIRE].

[17] A. Ghosal, A neutrino mass model with reflection symmetry, Mod. Phys. Lett. A 19 (2004)

2579 [INSPIRE].

– 27 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://dx.doi.org/10.1103/PhysRevD.90.093006
http://arxiv.org/abs/1405.7540
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.7540
http://dx.doi.org/10.1007/JHEP11(2014)052
http://arxiv.org/abs/1409.5439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5439
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://dx.doi.org/10.1016/0370-2693(86)91126-3
http://inspirehep.net/search?p=find+J+Phys.Lett.,B174,45
http://dx.doi.org/10.1016/j.aop.2004.02.003
http://dx.doi.org/10.1016/j.aop.2004.02.003
http://arxiv.org/abs/hep-ph/0401240
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0401240
http://dx.doi.org/10.1103/PhysRevD.75.083511
http://arxiv.org/abs/hep-ph/0609125
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0609125
http://dx.doi.org/10.1016/j.nuclphysb.2007.02.019
http://arxiv.org/abs/hep-ph/0611338
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611338
http://dx.doi.org/10.1016/j.physletb.2006.12.060
http://arxiv.org/abs/hep-ph/0609297
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0609297
http://dx.doi.org/10.1103/PhysRevLett.99.161801
http://arxiv.org/abs/0705.1503
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1503
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://arxiv.org/abs/1002.0211
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0211
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://dx.doi.org/10.1088/0034-4885/76/5/056201
http://arxiv.org/abs/1301.1340
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1340
http://arxiv.org/abs/hep-ph/9702253
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9702253
http://dx.doi.org/10.1103/PhysRevD.60.013002
http://arxiv.org/abs/hep-ph/9809415
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9809415
http://dx.doi.org/10.1103/PhysRevLett.87.011802
http://arxiv.org/abs/hep-ph/0102255
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,87,011802
http://dx.doi.org/10.1016/S0370-2693(01)00465-8
http://arxiv.org/abs/hep-ph/0104116
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0104116
http://dx.doi.org/10.1016/S0370-2693(01)00532-9
http://arxiv.org/abs/hep-ph/0104035
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0104035
http://dx.doi.org/10.1103/PhysRevD.66.117301
http://arxiv.org/abs/hep-ph/0207352
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0207352
http://dx.doi.org/10.1142/S0217732304014951
http://dx.doi.org/10.1142/S0217732304014951
http://inspirehep.net/search?p=find+J+Mod.Phys.Lett.,A19,2579


J
H
E
P
0
8
(
2
0
1
5
)
0
9
2

[18] R.N. Mohapatra, θ13 as a probe of µ↔ τ symmetry for leptons, JHEP 10 (2004) 027

[hep-ph/0408187] [INSPIRE].

[19] T. Kitabayashi and M. Yasue, µ-τ symmetry and maximal CP-violation, Phys. Lett. B 621

(2005) 133 [hep-ph/0504212] [INSPIRE].

[20] R.N. Mohapatra and W. Rodejohann, Broken µ-τ symmetry and leptonic CP-violation,

Phys. Rev. D 72 (2005) 053001 [hep-ph/0507312] [INSPIRE].

[21] E.I. Lashin, N. Chamoun, C. Hamzaoui and S. Nasri, Neutrino mass textures and partial µ-τ

symmetry, Phys. Rev. D 89 (2014) 093004 [arXiv:1311.5869] [INSPIRE].

[22] H.-J. He and F.-R. Yin, Common Origin of µ-τ and CP Breaking in Neutrino Seesaw,

Baryon Asymmetry and Hidden Flavor Symmetry, Phys. Rev. D 84 (2011) 033009

[arXiv:1104.2654] [INSPIRE].

[23] S.-F. Ge, H.-J. He and F.-R. Yin, Common Origin of Soft µ-τ and CP Breaking in Neutrino

Seesaw and the Origin of Matter, JCAP 05 (2010) 017 [arXiv:1001.0940] [INSPIRE].

[24] L. Wolfenstein, Oscillations among three neutrino types and CP-violation, Phys. Rev. D 18

(1978) 958 [INSPIRE].

[25] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino

oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

[26] Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002)

85 [hep-ph/0204049] [INSPIRE].

[27] T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an

accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801

[arXiv:1106.2822] [INSPIRE].

[28] MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to

electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802

[arXiv:1108.0015] [INSPIRE].

[29] Double CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor

electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801

[arXiv:1112.6353] [INSPIRE].

[30] Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance

at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

[31] RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino

Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802

[arXiv:1204.0626] [INSPIRE].

[32] P.F. Harrison and W.G. Scott, µ-τ reflection symmetry in lepton mixing and neutrino

oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].

[33] W. Grimus and L. Lavoura, A Nonstandard CP transformation leading to maximal

atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].

[34] W. Grimus and L. Lavoura, µ-τ Interchange symmetry and lepton mixing, Fortsch. Phys. 61

(2013) 535 [arXiv:1207.1678] [INSPIRE].

[35] S. Gupta, A.S. Joshipura and K.M. Patel, Minimal extension of tri-bimaximal mixing and

generalized Z2 × Z2 symmetries, Phys. Rev. D 85 (2012) 031903 [arXiv:1112.6113]

[INSPIRE].

– 28 –

http://dx.doi.org/10.1088/1126-6708/2004/10/027
http://arxiv.org/abs/hep-ph/0408187
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0408187
http://dx.doi.org/10.1016/j.physletb.2005.06.052
http://dx.doi.org/10.1016/j.physletb.2005.06.052
http://arxiv.org/abs/hep-ph/0504212
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504212
http://dx.doi.org/10.1103/PhysRevD.72.053001
http://arxiv.org/abs/hep-ph/0507312
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0507312
http://dx.doi.org/10.1103/PhysRevD.89.093004
http://arxiv.org/abs/1311.5869
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5869
http://dx.doi.org/10.1103/PhysRevD.84.033009
http://arxiv.org/abs/1104.2654
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2654
http://dx.doi.org/10.1088/1475-7516/2010/05/017
http://arxiv.org/abs/1001.0940
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.0940
http://dx.doi.org/10.1103/PhysRevD.18.958
http://dx.doi.org/10.1103/PhysRevD.18.958
http://inspirehep.net/search?p=find+J+Phys.Rev.,D18,958
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://arxiv.org/abs/hep-ph/0202074
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202074
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://dx.doi.org/10.1016/S0370-2693(02)01649-0
http://arxiv.org/abs/hep-ph/0204049
http://inspirehep.net/search?p=find+J+Phys.Lett.,B533,85
http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://arxiv.org/abs/1106.2822
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2822
http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://arxiv.org/abs/1108.0015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0015
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://arxiv.org/abs/1112.6353
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6353
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1669
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0626
http://dx.doi.org/10.1016/S0370-2693(02)02772-7
http://arxiv.org/abs/hep-ph/0210197
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0210197
http://dx.doi.org/10.1016/j.physletb.2003.10.075
http://arxiv.org/abs/hep-ph/0305309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0305309
http://dx.doi.org/10.1002/prop.201200118
http://dx.doi.org/10.1002/prop.201200118
http://arxiv.org/abs/1207.1678
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1678
http://dx.doi.org/10.1103/PhysRevD.85.031903
http://arxiv.org/abs/1112.6113
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6113


J
H
E
P
0
8
(
2
0
1
5
)
0
9
2

[36] P.M. Ferreira, W. Grimus, L. Lavoura and P.O. Ludl, Maximal CP-violation in lepton mixing

from a model with ∆27 flavour symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].

[37] R.N. Mohapatra and C.C. Nishi, S4 Flavored CP Symmetry for Neutrinos, Phys. Rev. D 86

(2012) 073007 [arXiv:1208.2875] [INSPIRE].

[38] F. Feruglio, C. Hagedorn and R. Ziegler, Lepton Mixing Parameters from Discrete and CP

Symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].

[39] M. Holthausen, M. Lindner and M.A. Schmidt, CP and Discrete Flavour Symmetries, JHEP

04 (2013) 122 [arXiv:1211.6953] [INSPIRE].

[40] M.-C. Chen, M. Fallbacher, K.T. Mahanthappa, M. Ratz and A. Trautner, CP violation from

finite groups, Nucl. Phys. B 883 (2014) 267 [arXiv:1402.0507] [INSPIRE].

[41] L.L. Everett, T. Garon and A.J. Stuart, A bottom-up approach to lepton flavor and CP

symmetries, JHEP 04 (2015) 069 [arXiv:1501.04336] [INSPIRE].

[42] P. Chen, C.-C. Li and G.-J. Ding, Lepton Flavor Mixing and CP Symmetry, Phys. Rev. D 91

(2015) 033003 [arXiv:1412.8352] [INSPIRE].

[43] G.-J. Ding, S.F. King and T. Neder, Generalised CP and ∆(6n2) family symmetry in

semi-direct models of leptons, JHEP 12 (2014) 007 [arXiv:1409.8005] [INSPIRE].

[44] G.-J. Ding and S.F. King, Generalized CP and ∆(96) family symmetry, Phys. Rev. D 89

(2014) 093020 [arXiv:1403.5846] [INSPIRE].

[45] G.-J. Ding, S.F. King and A.J. Stuart, Generalised CP and A4 Family Symmetry, JHEP 12

(2013) 006 [arXiv:1307.4212] [INSPIRE].

[46] G.-J. Ding, S.F. King, C. Luhn and A.J. Stuart, Spontaneous CP-violation from vacuum

alignment in S4 models of leptons, JHEP 05 (2013) 084 [arXiv:1303.6180] [INSPIRE].

[47] F. Feruglio, C. Hagedorn and R. Ziegler, A realistic pattern of lepton mixing and masses

from S4 and CP, Eur. Phys. J. C 74 (2014) 2753 [arXiv:1303.7178] [INSPIRE].

[48] I. Medeiros Varzielas and D. Pidt, Geometrical CP-violation with a complete fermion sector,

JHEP 11 (2013) 206 [arXiv:1307.6545] [INSPIRE].

[49] G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to CP in family

symmetry models, arXiv:1502.03105 [INSPIRE].

[50] Y.H. Ahn and S.K. Kang, Non-zero θ13 and CP-violation in a model with A4 flavor

symmetry, Phys. Rev. D 86 (2012) 093003 [arXiv:1203.4185] [INSPIRE].

[51] C.C. Nishi, Generalized CP symmetries in ∆(27) flavor models, Phys. Rev. D 88 (2013)

033010 [arXiv:1306.0877] [INSPIRE].

[52] K.S. Babu, E. Ma and J.W.F. Valle, Underlying A4 symmetry for the neutrino mass matrix

and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].

[53] E. Ma, Transformative A4 Mixing of Neutrinos with CP-violation, arXiv:1504.02086

[INSPIRE].

[54] X.-G. He, A Model of Neutrino Mass Matrix With δ = −π/2 and θ23 = π/4,

arXiv:1504.01560 [INSPIRE].

[55] E. Ma, A. Natale and O. Popov, Neutrino Mixing and CP Phase Correlations, Phys. Lett. B

746 (2015) 114 [arXiv:1502.08023] [INSPIRE].

– 29 –

http://dx.doi.org/10.1007/JHEP09(2012)128
http://arxiv.org/abs/1206.7072
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.7072
http://dx.doi.org/10.1103/PhysRevD.86.073007
http://dx.doi.org/10.1103/PhysRevD.86.073007
http://arxiv.org/abs/1208.2875
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2875
http://dx.doi.org/10.1007/JHEP07(2013)027
http://arxiv.org/abs/1211.5560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5560
http://dx.doi.org/10.1007/JHEP04(2013)122
http://dx.doi.org/10.1007/JHEP04(2013)122
http://arxiv.org/abs/1211.6953
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6953
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.023
http://arxiv.org/abs/1402.0507
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0507
http://dx.doi.org/10.1007/JHEP04(2015)069
http://arxiv.org/abs/1501.04336
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04336
http://dx.doi.org/10.1103/PhysRevD.91.033003
http://dx.doi.org/10.1103/PhysRevD.91.033003
http://arxiv.org/abs/1412.8352
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8352
http://dx.doi.org/10.1007/JHEP12(2014)007
http://arxiv.org/abs/1409.8005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8005
http://dx.doi.org/10.1103/PhysRevD.89.093020
http://dx.doi.org/10.1103/PhysRevD.89.093020
http://arxiv.org/abs/1403.5846
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5846
http://dx.doi.org/10.1007/JHEP12(2013)006
http://dx.doi.org/10.1007/JHEP12(2013)006
http://arxiv.org/abs/1307.4212
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4212
http://dx.doi.org/10.1007/JHEP05(2013)084
http://arxiv.org/abs/1303.6180
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6180
http://dx.doi.org/10.1140/epjc/s10052-014-2753-2
http://arxiv.org/abs/1303.7178
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7178
http://dx.doi.org/10.1007/JHEP11(2013)206
http://arxiv.org/abs/1307.6545
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6545
http://arxiv.org/abs/1502.03105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03105
http://dx.doi.org/10.1103/PhysRevD.86.093003
http://arxiv.org/abs/1203.4185
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4185
http://dx.doi.org/10.1103/PhysRevD.88.033010
http://dx.doi.org/10.1103/PhysRevD.88.033010
http://arxiv.org/abs/1306.0877
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0877
http://dx.doi.org/10.1016/S0370-2693(02)03153-2
http://arxiv.org/abs/hep-ph/0206292
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206292
http://arxiv.org/abs/1504.02086
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02086
http://arxiv.org/abs/1504.01560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.01560
http://dx.doi.org/10.1016/j.physletb.2015.04.064
http://dx.doi.org/10.1016/j.physletb.2015.04.064
http://arxiv.org/abs/1502.08023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.08023


J
H
E
P
0
8
(
2
0
1
5
)
0
9
2

[56] Y.H. Ahn, S.K. Kang, C.S. Kim and T.P. Nguyen, Bridges of Low Energy observables with

Leptogenesis in µ-τ Reflection Symmetry, arXiv:0811.1458 [INSPIRE].

[57] J. Heeck and W. Rodejohann, Gauged Lµ-Lτ Symmetry at the Electroweak Scale, Phys. Rev.

D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].

[58] J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgs → µτ in Abelian and

non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [arXiv:1412.3671]

[INSPIRE].

[59] W. Rodejohann, Neutrino-less Double Beta Decay and Particle Physics, Int. J. Mod. Phys. E

20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].

[60] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological

parameters, arXiv:1502.01589 [INSPIRE].

[61] S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105

[arXiv:0802.2962] [INSPIRE].

[62] C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the Universe, Adv. High Energy Phys.

2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].

[63] S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012)

125012 [arXiv:1211.0512] [INSPIRE].

[64] A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavor issues in

leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

[65] E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP

01 (2006) 164 [hep-ph/0601084] [INSPIRE].

[66] A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303

[hep-ph/0309342] [INSPIRE].

[67] P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour covariant transport

equations: an application to resonant leptogenesis, Nucl. Phys. B 886 (2014) 569

[arXiv:1404.1003] [INSPIRE].

[68] A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos,

Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].

[69] W. Grimus, L. Lavoura and P.O. Ludl, Is S4 the horizontal symmetry of tri-bimaximal lepton

mixing?, J. Phys. G 36 (2009) 115007 [arXiv:0906.2689] [INSPIRE].

[70] H. Neufeld, W. Grimus and G. Ecker, Generalized CP invariance, neutral flavor conservation

and the structure of the mixing matrix, Int. J. Mod. Phys. A 3 (1988) 603 [INSPIRE].

[71] G. Ecker, W. Grimus and H. Neufeld, A Standard Form for Generalized CP

Transformations, J. Phys. A 20 (1987) L807 [INSPIRE].

[72] D. Hernandez and A. Yu. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86

(2012) 053014 [arXiv:1204.0445] [INSPIRE].

[73] D. Hernandez and A.Y. Smirnov, Discrete symmetries and model-independent patterns of

lepton mixing, Phys. Rev. D 87 (2013) 053005 [arXiv:1212.2149] [INSPIRE].

[74] S.-F. Ge, D.A. Dicus and W.W. Repko, Z2 Symmetry Prediction for the Leptonic Dirac CP

Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].

– 30 –

http://arxiv.org/abs/0811.1458
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1458
http://dx.doi.org/10.1103/PhysRevD.84.075007
http://dx.doi.org/10.1103/PhysRevD.84.075007
http://arxiv.org/abs/1107.5238
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5238
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.025
http://arxiv.org/abs/1412.3671
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3671
http://dx.doi.org/10.1142/S0218301311020186
http://dx.doi.org/10.1142/S0218301311020186
http://arxiv.org/abs/1106.1334
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.1334
http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1016/j.physrep.2008.06.002
http://arxiv.org/abs/0802.2962
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2962
http://dx.doi.org/10.1155/2012/158303
http://dx.doi.org/10.1155/2012/158303
http://arxiv.org/abs/1301.3062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.3062
http://dx.doi.org/10.1088/1367-2630/14/12/125012
http://dx.doi.org/10.1088/1367-2630/14/12/125012
http://arxiv.org/abs/1211.0512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0512
http://dx.doi.org/10.1088/1475-7516/2006/04/004
http://arxiv.org/abs/hep-ph/0601083
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601083
http://dx.doi.org/10.1088/1126-6708/2006/01/164
http://dx.doi.org/10.1088/1126-6708/2006/01/164
http://arxiv.org/abs/hep-ph/0601084
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601084
http://dx.doi.org/10.1016/j.nuclphysb.2004.05.029
http://arxiv.org/abs/hep-ph/0309342
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309342
http://dx.doi.org/10.1016/j.nuclphysb.2014.06.020
http://arxiv.org/abs/1404.1003
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1003
http://dx.doi.org/10.1016/j.physletb.2004.04.037
http://arxiv.org/abs/hep-ph/0312138
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0312138
http://dx.doi.org/10.1088/0954-3899/36/11/115007
http://arxiv.org/abs/0906.2689
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2689
http://dx.doi.org/10.1142/S0217751X88000254
http://inspirehep.net/search?p=find+J+Int.J.Mod.Phys.,A3,603
http://dx.doi.org/10.1088/0305-4470/20/12/010
http://inspirehep.net/search?p=find+J+J.Phys.,A20,L807
http://dx.doi.org/10.1103/PhysRevD.86.053014
http://dx.doi.org/10.1103/PhysRevD.86.053014
http://arxiv.org/abs/1204.0445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0445
http://dx.doi.org/10.1103/PhysRevD.87.053005
http://arxiv.org/abs/1212.2149
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2149
http://dx.doi.org/10.1016/j.physletb.2011.06.096
http://arxiv.org/abs/1104.0602
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0602


J
H
E
P
0
8
(
2
0
1
5
)
0
9
2

[75] S.-F. Ge, D.A. Dicus and W.W. Repko, Residual Symmetries for Neutrino Mixing with a

Large θ13 and Nearly Maximal δD, Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964]

[INSPIRE].

[76] C.S. Lam, Determining Horizontal Symmetry from Neutrino Mixing, Phys. Rev. Lett. 101

(2008) 121602 [arXiv:0804.2622] [INSPIRE].

[77] C.S. Lam, The Unique Horizontal Symmetry of Leptons, Phys. Rev. D 78 (2008) 073015

[arXiv:0809.1185] [INSPIRE].

[78] C.S. Lam, Finite Symmetry of Leptonic Mass Matrices, Phys. Rev. D 87 (2013) 013001

[arXiv:1208.5527] [INSPIRE].

[79] M. Holthausen, K.S. Lim and M. Lindner, Lepton Mixing Patterns from a Scan of Finite

Discrete Groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].

[80] M. Holthausen and K.S. Lim, Quark and Leptonic Mixing Patterns from the Breakdown of a

Common Discrete Flavor Symmetry, Phys. Rev. D 88 (2013) 033018 [arXiv:1306.4356]

[INSPIRE].

[81] R.M. Fonseca and W. Grimus, Classification of lepton mixing matrices from finite residual

symmetries, JHEP 09 (2014) 033 [arXiv:1405.3678] [INSPIRE].

[82] J. Talbert, [Re]constructing Finite Flavour Groups: Horizontal Symmetry Scans from the

Bottom-Up, JHEP 12 (2014) 058 [arXiv:1409.7310] [INSPIRE].

[83] D. Chang, R.N. Mohapatra and M.K. Parida, Decoupling parity and SU(2)-R breaking scales:

a new approach to left-right symmetric models, Phys. Rev. Lett. 52 (1984) 1072 [INSPIRE].

[84] P. Minkowski, µ→ eγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421

[INSPIRE].

[85] T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979)

95 [INSPIRE].

[86] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc.

C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

[87] S.L. Glashow, The Future of Elementary Particle Physics, NATO Sci. Ser. B 61 (1980) 687.
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