8 research outputs found

    Antibiotics and specialized metabolites from the human microbiota

    No full text
    Decades of research on human microbiota have revealed much of their taxonomic diversity and established their direct link to health and disease. However, the breadth of bioactive natural products secreted by our microbial partners remains unknown. Of particular interest are antibiotics produced by our microbiota to ward off invasive pathogens. Members of the human microbiota exclusively produce evolved small molecules with selective antimicrobial activity against human pathogens. Herein, we expand upon the current knowledge concerning antibiotics derived from human microbiota and their distribution across body sites. We analyze, using our in-house chem-bioinformatic tools and natural products database, the encoded antibiotic potential of the human microbiome. This compilation of information may create a foundation for the continued exploration of this intriguing resource of chemical diversity and expose challenges and future perspectives to accelerate the discovery rate of small molecules from the human microbiota

    Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis

    No full text
    Abstract Background Among naturally occurring small molecules, tRNA-derived cyclodipeptides are a class that have attracted attention for their diverse and desirable biological activities. However, no tools are available to link cyclodipeptide synthases identified within prokaryotic genome sequences to their chemical products. Consequently, it is unclear how many genetically encoded cyclodipeptides represent novel products, and which producing organisms should be targeted for discovery. Results We developed a pipeline for identification and classification of cyclodipeptide biosynthetic gene clusters and prediction of aminoacyl-tRNA substrates and complete chemical structures. We leveraged this tool to conduct a global analysis of tRNA-derived cyclodipeptide biosynthesis in 93,107 prokaryotic genomes, and compared predicted cyclodipeptides to known cyclodipeptide synthase products and all known chemically characterized cyclodipeptides. By integrating predicted chemical structures and gene cluster architectures, we created a unified map of known and unknown genetically encoded cyclodipeptides. Conclusions Our analysis suggests that sizeable regions of the chemical space encoded within sequenced prokaryotic genomes remain unexplored. Our map of the landscape of genetically encoded cyclodipeptides provides candidates for targeted discovery of novel compounds. The integration of our pipeline into a user-friendly web application provides a resource for further discovery of cyclodipeptides in newly sequenced prokaryotic genomes

    Additional file 6: Figure S3. of Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis

    No full text
    Number of unique CDPS families discovered with cd-hit as a function of percent identity threshold. (PDF 4 kb

    Additional file 4: Table S3. of Global analysis of prokaryotic tRNA-derived cyclodipeptide biosynthesis

    No full text
    Complete set of 739 unique cyclodipeptide synthases identified in a global analysis of publicly available prokaryotic genomes. (XLSX 144 kb

    Tissue‐Engineered Disease Modeling of Lymphangioleiomyomatosis Exposes a Therapeutic Vulnerability to HDAC Inhibition

    No full text
    Abstract Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss‐of‐function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti‐invasive agents that are also selectively cytotoxic toward TSC2−/− cells. The anti‐invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1‐dependent and mediated by apoptosis. Genotype‐selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue‐engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study
    corecore