14 research outputs found

    Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    Get PDF
    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum efficiencies of polycrystalline perovskite films from 1% to 89%, with carrier lifetimes of 32 μs and diffusion lengths of 77 μm, comparable with perovskite single crystals. Remarkably, the surface recombination velocity of holes in the treated films is 0.4 cm/s, approaching the values for fully passivated crystalline silicon, which has the lowest values for any semiconductor to date. The enhancements translate to solar cell power-conversion efficiencies of 19.2%, with a near-instant rise to stabilized power output, consistent with suppression of ion migration. We propose a mechanism in which light creates superoxide species from oxygen that remove shallow surface states. The work reveals an industrially scalable post-treatment capable of producing state-of-the-art semiconducting films.S.D.S. has received funding from the European Union's Seventh Framework Program (Marie Curie Actions) under REA grant number PIOF-GA-2013-622630. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation (NSF) under award number MDR – 1419807. R.B. acknowledges support from the MIT Undergraduate Research Opportunities Program (UROP). A.O. acknowledges support from the NSF under grant no. 1605406 (EP/L000202). D.G. acknowledges the China Scholarship Council for funding, file no. 201504910812. The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) under EP/P02484X/1 and the Programme Grant EP/M005143/1. M.S.I. and C.E. acknowledge support from the EPSRC Program grant on Energy Materials (EP/KO16288) and the Archer HPC/MCC Consortium (EP/L000202). E.M.H. gratefully acknowledges the Netherlands Organization for Scientific Research (NWO) Echo number 712.014.007 for funding. The work was also partially supported by Eni S.p.A. via the Eni-MIT Solar Frontiers Center. The authors thank Mengfei Wu and Marc Baldo for access to an integrating sphere, Jay Patel and Michael Johnston for EQE verifications, and Eli Yablonovitch and Luis Pazos-Outón for helpful discussion

    Local Strain Heterogeneity Influences the Optoelectronic Properties of Halide Perovskites

    Get PDF
    Halide perovskites are promising semiconductors for optoelectronics, yet thin films show substantial microscale heterogeneity. Understanding the origins of these variations is essential for mitigating parasitic losses such as non-radiative decay. Here, we probe the structural and chemical origins of the heterogeneity by utilizing scanning X-ray diffraction beamlines at two different synchrotrons combined with high-resolution transmission electron microscopy to spatially characterize the crystallographic properties of individual micrometer-sized perovskite grains in high-quality films. We reveal new levels of heterogeneity on the ten-micrometer scale (super-grains) and even ten-nanometer scale (sub-grain domains). By directly correlating these properties with their corresponding local time-resolved photoluminescence properties, we find that regions showing the greatest luminescence losses correspond to strained regions, which arise from enhanced defect concentrations. Our work reveals remarkably complex heterogeneity across multiple length scales, shedding new light on the defect tolerance of perovskites

    Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    Get PDF
    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum efficiencies of polycrystalline perovskite films from 1% to 89%, with carrier lifetimes of 32 μs and diffusion lengths of 77 μm, comparable with perovskite single crystals. Remarkably, the surface recombination velocity of holes in the treated films is 0.4 cm/s, approaching the values for fully passivated crystalline silicon, which has the lowest values for any semiconductor to date. The enhancements translate to solar cell power-conversion efficiencies of 19.2%, with a near-instant rise to stabilized power output, consistent with suppression of ion migration. We propose a mechanism in which light creates superoxide species from oxygen that remove shallow surface states. The work reveals an industrially scalable post-treatment capable of producing state-of-the-art semiconducting films.S.D.S. has received funding from the European Union's Seventh Framework Program (Marie Curie Actions) under REA grant number PIOF-GA-2013-622630. This work made use of the Shared Experimental Facilities supported in part by the MRSEC Program of the National Science Foundation (NSF) under award number MDR – 1419807. R.B. acknowledges support from the MIT Undergraduate Research Opportunities Program (UROP). A.O. acknowledges support from the NSF under grant no. 1605406 (EP/L000202). D.G. acknowledges the China Scholarship Council for funding, file no. 201504910812. The authors acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) under EP/P02484X/1 and the Programme Grant EP/M005143/1. M.S.I. and C.E. acknowledge support from the EPSRC Program grant on Energy Materials (EP/KO16288) and the Archer HPC/MCC Consortium (EP/L000202). E.M.H. gratefully acknowledges the Netherlands Organization for Scientific Research (NWO) Echo number 712.014.007 for funding. The work was also partially supported by Eni S.p.A. via the Eni-MIT Solar Frontiers Center. The authors thank Mengfei Wu and Marc Baldo for access to an integrating sphere, Jay Patel and Michael Johnston for EQE verifications, and Eli Yablonovitch and Luis Pazos-Outón for helpful discussion

    Photoluminescent arrays of nanopatterned monolayer MoS2

    No full text
    Monolayer 2D MoS 2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS 2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS 2 has minimal large-scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain-dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (≈19 nm) of MoS 2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure-PL property correlations of sub-20 nm MoS 2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics

    Photoluminescent arrays of nanopatterned monolayer MoS2

    No full text
    Monolayer 2D MoS 2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS 2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron microscopy reveals the nanopatterned MoS 2 has minimal large-scale crystalline defects and enables the edge density to be measured for each nanoscale pattern geometry. Photoluminescence spectroscopy of nanodots, nanorods, and nanomesh areas shows strain-dependent spectral shifts up to 15 nm, as well as reduction in the PL efficiency as the edge density increases. Raman spectroscopy shows mode stiffening, confirming the release of strain when it is nanopatterned by BCP lithography. These results show that small nanodots (≈19 nm) of MoS 2 2D monolayers still exhibit strong direct band gap photoluminescence (PL), but have PL quenching compared to pristine material from the edge states. This information provides important insights into the structure-PL property correlations of sub-20 nm MoS 2 structures that have potential in future applications of 2D electronics, optoelectronics, and photonics
    corecore