31 research outputs found

    Pin1-dependent Prolyl Isomerization Modulates the Stress-induced Phosphorylation of High Molecular Weight Neurofilament Protein*

    No full text
    Aberrant phosphorylation of neuronal cytoskeletal proteins is a key pathological event in neurodegenerative disorders such as Alzheimer disease (AD) and amyotrophic lateral sclerosis, but the underlying mechanisms are still unclear. Previous studies have shown that Pin1, a peptidylprolyl cis/trans-isomerase, may be actively involved in the regulation of Tau hyperphosphorylation in AD. Here, we show that Pin1 modulates oxidative stress-induced NF-H phosphorylation. In an in vitro kinase assay, the addition of Pin1 substantially increased phosphorylation of NF-H KSP repeats by proline-directed kinases, Erk1/2, Cdk5/p35, and JNK3 in a concentration-dependent manner. In vivo, dominant-negative (DN) Pin1 and Pin1 small interfering RNA inhibited epidermal growth factor-induced NF-H phosphorylation. Because oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases, we studied the role of Pin1 in stressed cortical neurons and HEK293 cells. Both hydrogen peroxide (H2O2) and heat stresses induce phosphorylation of NF-H in transfected HEK293 cells and primary cortical cultures. Knockdown of Pin1 by transfected Pin1 short interference RNA and DN-Pin1 rescues the effect of stress-induced NF-H phosphorylation. The H2O2 and heat shock induced perikaryal phospho-NF-H accumulations, and neuronal apoptosis was rescued by inhibition of Pin1 in cortical neurons. JNK3, a brain-specific JNK isoform, is activated under oxidative and heat stresses, and inhibition of Pin1 by Pin1 short interference RNA and DN-Pin1 inhibits this pathway. These results implicate Pin1 as a possible modulator of stress-induced NF-H phosphorylation as seen in neurodegenerative disorders like AD and amyotrophic lateral sclerosis. Thus, Pin1 may be a potential therapeutic target for these diseases

    TFP5, a Peptide Inhibitor of Aberrant and Hyperactive Cdk5/p25, Attenuates Pathological Phenotypes and Restores Synaptic Function in CK-p25Tg Mice

    No full text
    It has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.p.) injections of a modified truncated 24-aa peptide (TFP5), derived from the cdk5 activator p35, penetrated the blood-brain barrier and significantly rescued AD-like pathology in 5XFAD model mice. The principal pathology in the 5XFAD mutant, however, is extensive amyloid plaques; hence, as a proof of concept, we believe it is essential to demonstrate the peptide's efficacy in a mouse model expressing high levels of p25, such as the inducible CK-p25Tg model mouse that overexpresses p25 in CamKII positive neurons. Using a modified TFP5 treatment, here we show that peptide i.p. injections in these mice decrease cdk5 hyperactivity, tau, neurofilament-M/H hyperphosphorylation, and restore synaptic function and behavior (i.e., spatial working memory, motor deficit using Rota-rod). It is noteworthy that TFP5 does not inhibit endogenous cdk5/p35 activity, nor other cdks in vivo suggesting it might have no toxic side effects, and may serve as an excellent therapeutic candidate for neurodegenerative disorders expressing abnormally high brain levels of p25 and hyperactive cdk5. © 2017 - IOS Press and the authors. All rights reserved.1

    Knockdown of Expression of Cdk5 or p35 (a Cdk5 Activator) Results in Podocyte Apoptosis.

    No full text
    Podocytes are terminally differentiated glomerular epithelial cells. Podocyte loss has been found in many renal diseases. Cdk5 is a cyclin-dependent protein kinase which is predominantly regulated by p35. To study the role of Cdk5/p35 in podocyte survival, we first applied western blotting (WB) analysis to confirm the time-course expression of Cdk5 and p35 during kidney development and in cultured immortalized mouse podocytes. We also demonstrated that p35 plays an important role in promoting podocyte differentiation by overexpression of p35 in podocytes. To deregulate the expression of Cdk5 or p35 in mouse podocytes, we used RNAi and analyzed cell function and apoptosis assaying for podocyte specific marker Wilms Tumor 1 (WT1) and cleaved caspase 3, respectively. We also counted viable cells using cell counting kit-8. We found that depletion of Cdk5 causes decreased expression of WT1 and apoptosis. It is noteworthy, however, that downregulation of p35 reduced Cdk5 activity, but had no effect on cleaved caspase 3 expression. It did, however, reduce expression of WT1, a transcription factor, and produced podocyte dysmorphism. On the other hand increased apoptosis could be detected in p35-deregulated podocytes using the TUNEL analysis and immunofluorescent staining with cleaved caspase3 antibody. Viability of podocytes was decreased in both Cdk5 and p35 knockdown cells. Knocking down Cdk5 or p35 gene by RNAi does not affect the cycline I expression, another Cdk5 activator in podocyes. We conclude that Cdk5 and p35 play a crucial role in maintaining podocyte differentiation and survival, and suggest these proteins as targets for therapeutic intervention in podocyte-damaged kidney diseases

    Cdk5 inhibitory peptide (CIP) inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    Get PDF
    Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG) results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs), however was detectable in the long exposure in HG cells (24 hrs and 48 hrs). Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5) with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes

    Cyclin-dependent kinase 5 differentially regulates the transcriptional activity of the glucocorticoid receptor through phosphorylation: Clinical implications for the nervous system response to glucocorticoids and stress

    No full text
    Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system and influence diverse functions of neuronal cells. We found that cyclin-dependent kinase 5 (CDK5), which plays important roles in the morphogenesis and functions of the nervous system and whose aberrant activation is associated with development of neurodegenerative disorders, interacted with the ligand-binding domain of the glucocorticoid receptor (GR) through its activator p35 or its active proteolytic fragment p25. CDK5 phosphorylated GR at multiple serines, including Ser203 and Ser211 of its N-terminal domain, and suppressed the transcriptional activity of this receptor on glucocorticoid-responsive promoters by attenuating attraction of transcriptional cofactors to DNA. In microarray analyses using rat cortical neuronal cells, the CDK5 inhibitor roscovitine differentially regulated the transcriptional activity of the GR on more than 90% of the endogenous glucocorticoid-responsive genes tested. Thus, CDK5 exerts some of its biological activities in neuronal cells through the GR, dynamically modulating GR transcriptional activity in a target promoter-dependent fashion
    corecore