4 research outputs found

    Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish

    Get PDF
    White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters. To study the genetic mechanisms underlying secondarily temperate adaptation in icefishes, we generated chromosome-level genome assemblies of both C. esox and its Antarctic sister species, Champsocephalus gunnari. The C. esox genome is similar in structure and organization to that of its Antarctic congener; however, we observe evidence of chromosomal rearrangements coinciding with regions of elevated genetic divergence in pike icefish populations. We also find several key biological pathways under selection, including genes related to mitochondria and vision, highlighting candidates behind temperate adaptation in C. esox. Substantial antifreeze glycoprotein (AFGP) pseudogenization has occurred in the pike icefish, likely due to relaxed selection following ancestral escape from Antarctica. The canonical AFGP locus organization is conserved in C. esox and C. gunnari, but both show a translocation of two AFGP copies to a separate locus, previously unobserved in cryonotothenioids. Altogether, the study of this secondarily temperate species provides an insight into the mechanisms underlying adaptation to ecologically disparate environments in this otherwise highly specialized group

    Removing the bad apples: A simple bioinformatic method to improve loci-recovery in de novo RADseq data for non-model organisms

    No full text
    1. The restriction site-associated DNA (RADseq) family of protocols involves digesting DNA and sequencing the region flanking the cut site, thus providing a cost and time-efficient way for obtaining thousands of genomic markers. However, when working with non-model taxa with few genomic resources, optimization of RADseq wet-lab and bioinformatic tools may be challenging, often resulting in allele dropout—that is when a given RADseq locus is not sequenced in one or more individuals resulting in missing data. Additionally, as datasets include divergent taxa, rates of dropout will increase since restriction sites may be lost due to mutation. Mitigating the impacts of allele dropout is crucial, as missing data may lead to incorrect inferences in population genetics and phylogenetics. 2. Here, we demonstrate a simple pipeline for the optimization of RADseq datasets which involves partitioning datasets into subgroups, namely by reducing and analysing the dataset at a population or species level. By running the software Stacks at a subgroup level, we were able to reliably identify and remove individuals with high levels of missing data (bad apples) likely stemming from artefacts in library preparation, DNA quality or sequencing artefacts. 3. Removal of the bad apples generally led to an increase in loci and decrease in missing data in the final datasets. 4. The biological interpretability of the data, as measured by the number of retrieved loci and missing data, was considerably increased

    Removing the bad apples: A simple bioinformatic method to improve loci-recovery in de novo RADseq data for non-model organisms

    No full text
    1. The restriction site-associated DNA (RADseq) family of protocols involves digesting DNA and sequencing the region flanking the cut site, thus providing a cost and time-efficient way for obtaining thousands of genomic markers. However, when working with non-model taxa with few genomic resources, optimization of RADseq wet-lab and bioinformatic tools may be challenging, often resulting in allele dropout—that is when a given RADseq locus is not sequenced in one or more individuals resulting in missing data. Additionally, as datasets include divergent taxa, rates of dropout will increase since restriction sites may be lost due to mutation. Mitigating the impacts of allele dropout is crucial, as missing data may lead to incorrect inferences in population genetics and phylogenetics. 2. Here, we demonstrate a simple pipeline for the optimization of RADseq datasets which involves partitioning datasets into subgroups, namely by reducing and analysing the dataset at a population or species level. By running the software Stacks at a subgroup level, we were able to reliably identify and remove individuals with high levels of missing data (bad apples) likely stemming from artefacts in library preparation, DNA quality or sequencing artefacts. 3. Removal of the bad apples generally led to an increase in loci and decrease in missing data in the final datasets. 4. The biological interpretability of the data, as measured by the number of retrieved loci and missing data, was considerably increased

    Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie <i>Eleginops maclovinus</i>—The Closest Ancestral Proxy of Antarctic Cryonotothenioids

    No full text
    The basal South American notothenioid Eleginops maclovinus (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the E. maclovinus genome using long read sequencing and HiC scaffolding. We compared its genome architecture with the more basally divergent Cottoperca gobio and the derived genomes of nine cryonotothenioids representing all five Antarctic families. We also reconstructed a notothenioid phylogeny using 2918 proteins of single-copy orthologous genes from these genomes that reaffirmed E. maclovinus’ phylogenetic position. We additionally curated E. maclovinus’ repertoire of circadian rhythm genes, ascertained their functionality by transcriptome sequencing, and compared its pattern of gene retention with C. gobio and the derived cryonotothenioids. Through reconstructing circadian gene trees, we also assessed the potential role of the retained genes in cryonotothenioids by referencing to the functions of the human orthologs. Our results found E. maclovinus to share greater conservation with the Antarctic clade, solidifying its evolutionary status as the direct sister and best suited ancestral proxy of cryonotothenioids. The high-quality genome of E. maclovinus will facilitate inquiries into cold derived traits in temperate to polar evolution, and conversely on the paths of readaptation to non-freezing habitats in various secondarily temperate cryonotothenioids through comparative genomic analyses
    corecore