5 research outputs found

    Universal chiral conductivities for low temperature holographic superfluids

    Get PDF
    We argue that the chiral conductivities of generic s-wave holographic superfluids, whose broken U(1) symmetry is anomalous, exhibit universal behavior at low temperatures. The universal behavior we argue for is independent of the details of the bulk action and on the emergent geometry deep in the bulk interior at low temperatures. Our results are contrasted against general expectations based on an analysis of the entropy current in superfluids.Comment: 14 pages, 2 figure

    Transport in holographic superfluids

    Full text link
    We construct a slowly varying space-time dependent holographic superfluid and compute its transport coefficients. Our solution is presented as a series expansion in inverse powers of the charge of the order parameter. We find that the shear viscosity associated with the motion of the condensate vanishes. The diffusion coefficient of the superfluid is continuous across the phase transition while its third bulk viscosity is found to diverge at the critical temperature. As was previously shown, the ratio of the shear viscosity of the normal component to the entropy density is 1/(4 pi). As a consequence of our analysis we obtain an analytic expression for the backreacted metric near the phase transition for a particular type of holographic superfluid.Comment: 45 pages + appendice

    Abstracts of Papers Presented at the 10th Conference of the Weed Science Society of Israel

    No full text
    corecore