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1 Introduction and summary

Recent developments have thrust forward our understanding of the role of anomalies in hy-

drodynamic and thermal states. Somewhat surprisingly, anomalies enter the hydrodynamic

constitutive relations in unexpected ways, allowing for transport phenomenon associated

with the response of a fluid to a magnetic field and vorticity [2–8]. A fluid possessing a

U(1)3 anomaly or a mixed anomaly will linearly respond to even small vorticities whereas

a fluid for which anomalies are absent will not. A full study of the role of anomalies in

normal fluids has recently been discussed in [9, 10].

In what follows we present a study of the role of anomalies in superfluids. Superfluids

may be thought of as fluids for which a global U(1) symmetry is spontaneously broken.

This phenomenon manifests itself in terms of an extra superfluid degree of freedom, the

Goldstone boson. Like normal fluids, superfluids may also respond to vorticity (of the nor-

mal fluid component) and a magnetic field. However, the standard analysis of superfluids

poses no restrictions on the response parameters and the response may, or may not, depend

on the anomalies present in the theory. This unmistakable difference between normal fluids,

for which the response to vorticity and magnetic field is fully controlled by the anomalies,

and superfluids, for which the response to vorticity and magnetic field is not controlled by

the anomalies, is not surprising. The extra goldstone degree of freedom available to super-

fluids changes its dynamics to the hilt [11, 12]. Indeed, canonical methods used to study

superfluids give very little data as to the value of the response of the superfluid to vorticity

or a magnetic field [1, 13–18]. Additionally, holographic methods, as used so far [1], have

also not provided clear predictions for the aforementioned response parameters.

Here we extend the analysis of [1] where, among other things, parity violating transport

of holographic superfluids was studied. In a holographic framework the response of the

superfluid to vorticity or a magnetic field is, in general, model dependent. However, as

we will shortly argue, if parity is broken due to an anomaly then at low temperatures the

parity breaking response parameters of the (s-wave) superfluid are completely fixed by the

anomalies of the theory and do not depend on the particular details of the bulk Lagrangian.

This feature is somewhat unexpected especially since it is oblivious to the bulk geometry
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emerging in the infrared at low temperatures. That is, the universal value we obtain for the

response to vorticity and magnetic field, is the same whether the geometry that emerges at

zero temperature has conformal symmetry or Lifshitz symmetry. Some other setups where

transport properties of holographic theories are universal can be found in [19–24].

To make our claim more precise, let us introduce some notation. A normal fluid in 3+1

dimensions with a single conserved U(1) charge may be characterized by a velocity field uµ,

a temperature field T and a chemical potential µ. The existence of a hydrodynamic state

implies that the stress tensor and conserved charge current may be expressed as a local

function of the hydrodynamic fields uµ, T and µ and their gradients. These expressions are

referred to as constitutive relations. Assuming that variations of the hydrodynamic fields

are small compared to the mean free path, the constitutive relations may be expressed as a

series expansion in gradients of uµ, T and µ (see e.g., [25, 26] for an extensive discussion).

For a normal fluid, with a U(1)3 anomaly and with a particular choice of out of equilibrium

definition of temperature, velocity and chemical potential, (i.e., the Landau frame [11]) one

finds by a standard analysis [5, 6] that

Jµ = ρuµ + κ
(
T−1Fµνuν − Pµν∂ν

µ

T

)
+ κ̃ωω

µ + κ̃BB
µ , (1.1)

where ρ(T, µ) is the charge density, κ(T, µ) is the thermal conductivity, Fµν is the external

field strength, Pµν = ηµν + uµuν is the projection matrix orthogonal to the velocity field,

ωµ = εµνρσuν∂ρuσ is the vorticity and Bµ = 1
2ε
µνρσuνFρσ is the magnetic field as seen in

the rest frame of a fluid element. In what follows we will refer to the last two terms on the

right hand side of (1.1) as the parity violating terms and the remaining terms on the right

hand side of (1.1) as the parity preserving terms. While the conductivity κ can take any

positive value, the conductivities κ̃ must satisfy

κ̃ω = c

(
µ2 − 2

3

ρ

ε+ P
µ3

)
, κ̃B = c

(
µ− 1

2

ρ

ε+ P
µ2

)
, (1.2)

with ε and P the energy density and pressure respectively. Here c specifies the strength of

the anomaly, i.e., the (non-)conservation law for the current Jµ is given by [27]:1

∂µJ
µ = − c

8
εµνρσFµνFρσ . (1.3)

In what follows we will (with a slight abuse of language) refer to the coefficients κ̃ as chiral

conductivities.

While the anomaly contributes to parity breaking terms in the current, as given

by (1.1), with our current choice of out of equilibrium definitions for the velocity field,

temperature and chemical potential it does not modify the constitutive relations for the

stress tensor. It does, however, modify the entropy current. An entropy current is a cur-

rent which in thermodynamic equilibrium is given by the entropy density boosted to the

fluid center of mass velocity and whose divergence is non negative for any solution to the

1In this work we consider only a U(1)3 anomaly. Mixed anomalies also play an important role in

the hydrodynamic response of 3 + 1 dimensional theories [8–10, 28, 29] but will not be discussed in the

current work.
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equations of motion [1, 11]. In a hydrodynamic setting, and with our current conventions,

it is given, to first order in derivatives, by

Jµs = suµ − µ

T
(Jµ − ρuµ) + σωω

µ + σBB
µ . (1.4)

The coefficients σω and σB are referred to as the non canonical contributions to the entropy

current and are given by

σω = c
µ3

3T
, σB = c

µ2

2T
. (1.5)

See [5] for details.

For a superfluid with small superfluid velocity, the same techniques that lead to (1.1)

give us

Jµ =
(

parity preserving
terms

)
+ κ̃ωω

µ + κ̃BB
µ . (1.6)

However, following the analysis in [1, 17, 18], as opposed to relations of the form (1.2),

the chiral conductivities are not fixed by the anomaly. Whether the underlying theory

is anomalous or not, as long as parity is broken we expect κ̃ω and κ̃B to be non zero.

Similarly, the parity odd contributions to the entropy current are given by

Jµs =
(

parity preserving
terms

)
+
(
σω −

µ

T
κ̃ω

)
ωµ +

(
σB −

µ

T
κ̃B

)
Bµ , (1.7)

where the coefficients σB and σω must satisfy

1

2
σω − µσB = −cµ

3

3T
, (1.8)

but are otherwise unconstrained [1]. Nonetheless, we claim in what follows that in generic

holographic superfluids the chiral terms will asymptote to the values

κ̃ω = 0 , κ̃B =
c

3
µ , σω = 0 , σB =

µ

T
κ̃B =

c

3

µ2

T
(1.9)

at low temperatures.2 In other words, chiral transport coefficients in holographic superflu-

ids with anomalies approach a universal value at low temperatures. In order to estimate

the rate at which the chiral conductivities converge to their low temperature values (1.9)

we resort to numerics. We find that superfluids whose geometry approaches an AdS to

AdS domain wall solution at low temperatures have good convergence properties but that

geometries whose low temperature behavior is asymptotically Lifshitz in the deep interior

must be very cold in order for (1.9) to hold to good accuracy.

Our paper is organized as follows, in section 2 we review the results of [1] where inte-

gral expressions for κ̃B, κ̃ω, σω and σB have been obtained for generic s-wave superfluids.

Using these integral expressions (see equation (2.14)) we argue in section 3 that at low

enough temperatures κ̃B, κ̃ω, σω and σB should asymptote to (1.9) regardless of the emer-

gent geometry in the deep interior. We complement our analytic findings with numerical

solutions to the equations of motion in section 4 where we also discuss the rate at which

the chiral conductivities approach their universal values (1.9).

2The values quoted in (1.9) are the ones associated with the covariant current. The chiral conductivities

for the consistent current vanish. For a detailed discussion on consistent and covariant currents see [9, 30, 31].

We thank K. Jensen for discussions on this point.

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
4

2 Review of the results of [1]

The minimal holographic realization of a superfluid consists of an Abelian gauge field AM
and a charged scalar field ψ living on an asymptotically AdS geometry [32–34]. Spontaneous

breaking of a global U(1) symmetry in the boundary theory is triggered by the condensation

of the charged scalar field in the bulk. The most general five dimensional two-derivative

bulk action which includes gravity, a U(1) gauge field and a charged scalar field is given by

S = SEH + Smatter + SCS , (2.1)

where

SEH =
1

2κ2

∫
d5x
√
−g (R+ 12) ,

Smatter =
1

2κ2

∫
d5x
√
−g
(
−1

4
VF (|ψ|)FMNF

MN − Vψ(|ψ|)(DMψ)
(
DMψ

)∗ − V (|ψ|)
)
,

SCS =
c

24

∫
d5x
√
−gεMNPQRAMFNPFQR ,

with ε01234 = 1/
√
−g, DM = ∂M − iqAM , VF (0) = Vψ(0) = 1 and V (0) = 0. Capital latin

indices run from 0 to 4. The parity odd topological term SCS implies that the dual field

theory posseses a U(1)3 anomaly. The parameter c which characterizes the Chern-Simons

term is identified with the strength of the anomaly. The equations of motion which follow

from the action (2.1) are

0 =
1√
−g

DM

(√
−gVψDMψ

)
− ∂V (|ψ|)

∂ψ∗
− 1

4

∂VF (|ψ|)
∂ψ∗

F 2 −
∂Vψ(|ψ|)
∂ψ∗

|Dψ|2 ,

0 =
1√
−g

∂N
(√
−gVFFNM

)
+
κ2c

4
εMABCDFABFCD + iqVψ

(
ψ
(
DMψ

)∗ − ψ∗ (DMψ
))

,

0 = RMN −
1

2
(R+ 12)gMN − TMN , (2.2)

with

TMN =− 1

2
gMN

(
1

4
VFFABF

AB + Vψ|Dψ|2 + V

)
+

1

2
VFFMAFN

A

+
1

2
Vψ ((DMψ)(DNψ)∗ + (DNψ)(DMψ)∗) .

Various numerical solutions to the equations of motion (2.2) have been studied in the

literature (see, e.g., [35–37]).

In [1] a closed form expression for the parity odd transport coefficients κ̃ω, κ̃B, σω and

σB has been obtained. In what follows we sketch-out the computation of [1] referring the

interested reader to the latter for a full derivation. We start with an ansatz

ds2 = −r2f(r)dt2 + r2d~x2 + 2h(r)dtdr ,

ψ = %(r)eiqϕ(r) ,

AM = (A0(r), 0, 0, 0, A4(r))

(2.3)
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describing a stationary superfluid in the dual field theory, and replace the gauge field with

the gauge invariant combination

GM = AM − ∂Mϕ . (2.4)

Solutions to the equations of motion (2.2) which describe a superfluid at non zero

temperature are characterized by an event horizon which manifests itself as a simple zero

of f and G0 at a fixed value of the radial coordinate rh. The Hawking temperature and

Bekenstein entropy density of the resulting black hole are given by

T =
r2
hf
′(rh)

4πh(rh)
, s =

2πr3
h

κ2
. (2.5)

The latter are also the temperature and entropy density of the dual field theory. Other

thermodynamic properties of the dual field theory may be read off of the near boundary

(large r) expansion of the bulk fields, viz.,

f = 1− 2κ2P

r4
+O

(
r−5
)
, h = 1−

∆C2
∆| 〈Oψ〉 |2

6r2∆
+O

(
r−2∆−2

)
,

% =
C∆| 〈Oψ〉 |

r∆
+O

(
r∆−2

)
, G0 = µ− κ2ρt

r2
+O

(
r−3
)
,

(2.6)

where ∆ is the conformal dimension of the operator Oψ dual to the scalar ψ and C∆ is

a real constant which can be determined but is irrelevant for our current discussion. The

parameters µ and ρt correspond to the chemical potential and the total charge density on

the superfluid phase, respectively.

The gravitational manifestation of the Gibbs Duhem relation between entropy, temper-

ature, energy density and pressure follows from the existence of a Noether charge [38, 39]

2κ2Q1 =
r5f ′ − r3VFG0G

′
0

h
. (2.7)

It is straightforward to check that ∂rQ1 = 0 under the equations of motion and that

using (2.5) and (2.6)

Q1 = sT = 4P − µρt . (2.8)

In order to obtain a non stationary superfluid with small superfluid velocity one needs

to introduce linear perturbations of the gauge field Gi and metric components gti where

i = 1, . . . , 3 [35, 40]. Denoting the Goldstone boson in the boundary theory by φ, we

may write

Gi = −g(r)∂iφ , gti = −r2γ(r)∂iφ . (2.9)

The linearized equations of motion for the fluctuations γ and g can be written as total

derivatives. After integrating these equations once we find

2κ2Q2 =
r5γ′ + r3VF gG

′
0

h
, (2.10a)

Q3 + 2κ2fQ2 = 2κ2γQ1 +
fr3VF (gG′0 − g′G0)

h
, (2.10b)
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where Q2 and Q3 are integration constants. The presence of an event horizon at r = rh
implies that γ(rh) = 0 and hence that Q3 = 0.

When the temperature of the superfluid is non vanishing then only a fraction of the

charge condenses and the total charge density of the system may be thought of as a sum of

a superfluid (condensate) charge density and a normal charge density. The charge density

of the normal (uncondensed) component, ρ, can be read off of the near boundary (large r)

expansion of g and γ,

γ =
1

2

(ρt − ρ)κ2

r4
+O

(
r−5
)
,

g = 1− (ρt − ρ)κ2

µr2
+O

(
r−3
)
.

(2.11)

Inserting (2.11) into (2.10a) we find that

Q2 = ρ . (2.12)

Carrying out a standard bulk to boundary mapping (see e.g., [14, 40, 41]) one finds that

Jµ = ρuµ +
ρt − ρ
µ

∂µφ (2.13)

as expected for a superfluid at leading order in gradients moving at a small superfluid

velocity [1, 11, 35, 40, 41].

In [1] a straightforward though somewhat tedious computation shows that the parity

odd transport coefficients associated with this theory are given by definite integrals over the

bulk fields g and G0. The computation involves carrying out the fluid-gravity algorithm for

superfluids [14, 41], or, in other words, perturbing the superconducting black hole solution

described above and studying the tensor, vector and scalar modes associated with the slowly

space-time varying perturbations . The coefficients κ̃ω κ̃B, σω and σB are associated with

parity odd vector modes whose equations of motion decouple from the scalar and tensor

modes and can be solved for implicitly in integral form. In particular, one finds that

κ̃B = c

∫ ∞
rh

[
g2G′0 +R(G0 − gµ)gG′0

]
dr , (2.14a)

κ̃ω = −2c

∫ ∞
rh

[
(G0 − gµ)gG′0 +R(G0 − gµ)2G′0

]
dr , (2.14b)

σB =
c

T

∫ ∞
rh

gG0G
′
0dr , (2.14c)

σω = −2c

T

∫ ∞
rh

(G0 − µg)G0G
′
0dr , (2.14d)

with

R =
ρ

4P − µ(ρt − ρ)
. (2.14e)

– 6 –
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3 Low temperature behavior

The parity odd transport coefficients κ̃ω, κ̃B, σω and σB are given by integrals of G0 and g.

At low temperatures or small Q1 an approximate solution to (2.10b) is given by

µg

G0
= 1 + µ

∫ ∞
r

2κ2Q2h

VF (ψ)G2
0r
′3dr

′ +O(Q1) , (3.1)

where we have imposed that g = 1 at the boundary. In order for g/G0 to remain finite

at the horizon we need to set Q2 to 0. Thus, as one might expect, we find that at low

temperatures the charge density of the normal component vanishes. Inserting g = G0/µ

into (2.14) one finds that the integrands in (2.14) become total derivatives leading to (1.9).

That zero temperature is equivalent to zero normal charge density is the key feature

of holographic superfluids which enables us to compute the zero temperature limit of κ̃ω,

κ̃B, σω and σB. To understand how the latter condition is realized we follow the analysis

of [39, 42]. Consider the zero temperature limit of the black hole dual to the condensed

phase. By construction, the asymptotic behavior of the fields at large values of r approach

an AdS solution,

ds2 = r2
(
−dt2 + d~x2

)
+ 2dtdr . (3.2)

Deep in the interior of AdS, when r is small, the solution to the equations of motion will

approach a different stationary configuration where the magnitude of the scalar |ψ| is a

constant. We will refer to the full solution interpolating between the large r (ultraviolet)

asymptotically AdS regime and the small r (infrared) regime as a domain wall. Within

our setup (2.1) and (2.3) there are two classes of infrared behavior [39] whose precise form

depends on the value of the scalar field in the deep interior.3 If the scalar ψ is at a minimum

of the potential V (ψ) then the infrared geometry is an AdS solution,

ds2 =
r2

L2
IR

(
−f0dt

2 + d~x2
)

+ 2

√
f0

LIR
drdt (3.3)

together with G0 = 0 and g = γ = 0, where

LIR =

√
−12

−12 + V (ψIR)
, (3.4)

and ψIR is the value of the scalar at the minimum of V (ψ). Alternately ψ can take values

ψ0 for which the geometry takes the Lifshitz form

ds2 = −zp
2
0VF (ψ0)

2(z − 1)
r2zdt2 + r2d~x2 +

√
3zp0VF (ψ0)

qψ0

√
(z − 1)Vψ(ψ0)

rz−1drdt ,

G0 = p0r
z ,

(3.5)

3In [39] it was shown that, in AdS4, assuming an isotropic space-time the infrared behavior of the dual

CFT could have Lifshitz or conformal symmety. In this work we restrict ourselves to superfluids which are

isotropic. Non isotropic solutions such as those mentioned in [43] or hard wall models for confinement as

discussed in [44] will not be considered in this work — their general effect on the superfluid dynamics has

yet to be investigated.
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where z is given implicitly by

V ′(ψ0) = 2
(z − 1)Vψ(ψ0)

z VF (ψ0)
q2ψ0

(
2 +

ψ0

Vψ(ψ0)
V ′ψ(ψ0) +

z ψ0

3VF (ψ0)
V ′F (ψ0)

)
, (3.6)

and reality of the solution implies that z ≥ 1. For the Lifshitz solution the vector fluctua-

tions satisfy

g = g0r
z and γ = −zg0p0VF (ψ0)

2(z − 1)
r2z−2 . (3.7)

We will refer to the solution interpolating from (3.2) to (3.3) as an AdS to AdS domain

wall and to the solution interpolating from (3.2) to (3.5) as an AdS to Lifshitz domain wall.

For an AdS to AdS domain wall geometry both G and g approach their trivial infrared

(small r) value via a power law behavior,

G0 → p0r
∆G−3 , g → g0r

∆G−3 , (3.8)

where ∆G is the conformal dimension of the current operator and can be obtained ex-

plicitly by considering linearized perturbations of the solution around the infrared back-

ground (3.3). Likewise, from (3.5) and (3.7) we have, at small r,

G0 → p0r
z , g → g0r

z , (3.9)

for an AdS to Lifshitz domain wall. Thus, for both an AdS to AdS domain wall and

for an AdS to Lifshitz domain wall we find that the ratio G0/g is finite in the infrared

concluding our argument that the charge density of the normal component vanishes at

zero temperature.

We note in passing that for a given potential V (ψ) the preferred infrared behavior

will be the most stable one. A criteria for stability of the AdS to AdS domain wall is

the infrared conformal dimension of the current dual to the gauge field, ∆G. When this

current is relevant in the infrared, ∆G < 4, then the infrared geometry is unstable. The

conformal dimension of the current dual to the gauge field can be obtained by considering

small fluctuations δGIR of the zero component of the gauge field around the background

solution (3.3). One finds

δG′′IR +
3

r
δG′IR −

m2
φL

2
IR

r2
δGIR = 0 , (3.10)

where

m2
φ =

2q2|ψIR|2Vψ(ψIR)

VF (ψIR)
. (3.11)

Using the standard relation between mass and conformal dimension (see e.g., [45]), we

find that

∆G = 2 +
√

1 +m2
φL

2
IR . (3.12)

Thus, AdS to AdS domain walls will certainly be unstable for ∆G ≤ 4 though instabilities

may arise even when ∆G > 4 if other competing solutions exist [39].

– 8 –
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4 Numerics

In order to construct the AdS to AdS and AdS to Lifshitz domain wall solutions and exhibit

the behavior described by (2.14) explicitly we resort to numerics. We focus our attention

on the particular W-shaped scalar potential

V (|ψ|) = m2|ψ|2 +
u

2
|ψ|4 , (4.1)

with m2 < 0 and u > 0 and

Vψ = 1 , VF = 1 . (4.2)

Following [39] the action characterized by the above potentials can generate both AdS to

AdS domain walls and AdS to Lifshitz domain wall solutions depending on the choice of

parameters {q,m, u}. When the boundary theory flows to a conformal fixed point (i.e.,

the geometry is given by an AdS to AdS domain wall), then, following the notation and

analysis of section 3,

ψIR =

√
−m

2

u
, LIR =

√
24u

m4 + 24u
. (4.3)

When the small r behavior is Lifshitz we find that

ψ0 =

√
−m

2

u
+

2q2(z − 1)

zu
,

1

2
uψ4

0 +

(
m2 +

2q2(9 + z(2 + z))

3z

)
− 12 = 0 , (4.4)

where the last equation determines z in terms of u, m and q.

While not directly related to our current analysis, the condition that the current dual

to the gauge field is irrelevant in the infrared, ∆G > 4, amounts to

− 48 q2m2

24u+m4
> 3 . (4.5)

As observed in [39] even when ∆G > 4, a solution with Lifshitz geometry in the infrared

(small r) may have lower free energy than the solution which is asymptotically AdS at

small r.4

To compute the integrals in (2.14) explicitly, we have constructed, numerically, super-

fluid solutions to the equations of motion at consecutively low temperatures. Our numeri-

cal scheme involved integrating (2.2) subject to the asymptotic boundary conditions given

in (2.6), i.e., we imposed that the non normalizable mode of the scalar field vanishes. With

numerical expressions for the background metric and matter fields at hand we solved the

equations of motion (2.10) for fluctuations of the metric and gauge field, g and γ, demand-

ing that their near boundary behavior is dictated by (2.11). By varying the charge of the

scalar field q and its potential which is defined by m and u (see (4.1)) we could generate

condensates whose low temperature behavior is either an AdS to AdS domain wall or an

AdS to Lifshitz geometry.

4Indeed, for the case at hand if q <
√
−m2/3 and 1 < z < z+ or

√
−m2/3 < q <

√
−27m2/71 and

z− < z < z+ where z± =
9m2+7q2±

√
81m4+186m2q2−71q4

2m2−4q2
then both an AdS solution and a Lifshitz solution

are possible in the deep interior of the geometry. The preferred solution will be the one with the lowest

free energy.

– 9 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
4

0.05 0.10 0.15 Têm

0.2

0.4

0.6

0.8
kéBêm, kéwêm2

kéBêm

kéwêm20.331

1ê3
0.335

-6 -4 -2 0 2 Log@rêmD
0.95

1.00

1.05

f h-1

T=0TC

T=0.01TC T=0.1TC T=0.5TC T=1.TC

Figure 1. A typical AdS to AdS domain wall solution (right) and the associated values of κ̃B and

κ̃ω (left). In the right panel we have plotted the metric components
√
f/h (see (2.3)) for a condensed

phase obtained by solving (2.2) with c = 1, q = 2, (4.1) with m2L2 = −15/4 (∆ = 5/2) and u = 6,

and (4.2). The zero temperature solution (purple) interpolates between an AdS geometry at the

boundary (large r) and an AdS geometry in the deep interior (small r). In the left panel we plot the

chiral conductivities κ̃B and κ̃ω as a function of temperature. The vertical gray line signifies the

critical temperature at which the superfluid phase appears. The remaining red, orange, green and

blue vertical lines correspond to the temperatures exhibited in the right panel. We have also added

an inset featuring the low temperature behavior of κ̃B , where the horizontal axis (temperature) is

given in a logarithmic scale.

Plots exhibiting the emergence of domain wall geometries can be found in the right

panel of figures 1 and 2 where the metric coefficients f and h defined in (2.3) are plotted

as a function of the radial coordinate r for various values of the temperature. The purple

curve in the right panel of figure 1 depicts a typical AdS to AdS domain wall geometry.

The blue, green, orange and red curves depict the AdS to AdS domain wall solution at

increasingly higher temperatures. The domain wall geometry becomes imperceptible once

the temperature is larger than, roughly 10−3Tc with Tc ∼ 0.15µ. In contrast, for an AdS

to Lifshitz geometry to be revealed one has to reach significantly lower temperatures. In

the right panel of figure 2 an emergent Lifshitz symmetry at small values of r is observed

at temperatures smaller than, roughly, 10−9Tc. In general, we find that the temperature

at which a Lifshitz geometry in the infrared becomes manifest is lower the higher the

critical exponent.

In our analysis we have computed the values of the chiral conductivities for a scalar of

mass m2L2 = −15/4 which corresponds to an operator of dimension ∆ = 5/2 or, using the

alternative quantization scheme [46], ∆ = 3/2. For the ∆ = 5/2 case we have generated

17 solutions with values of q and u in the range 3/2 < q < 6 and 5.1 < u < 33. We have

also studied a handful of solution for the alternate quantization scheme where ∆ = 3/2.

Typical behavior of the chiral conductivities κ̃ω and κ̃B for configurations which reduce

to an AdS to AdS geometry at low temperatures can be seen in the left panel of figure 1.

We have not shown very similar plots for the coefficients σω and σB associated with the

entropy current. The chiral conductivities converge monotonically to their universal low

temperature values (1.9) reaching 1% accuracy at roughly T ∼ 0.3Tc and 0.01% accuracy at

T ∼ 0.1Tc. We attribute these considerably rapid convergence properties to the appearance

of the domain wall solution at relatively high temperatures.

– 10 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
4

kéBêm

kéwêm2
1ê3
0.35

0.02 0.04 0.06 0.08 0.10 Têm

0.2

0.4

0.6

0.8
kéBêm, kéwêm2

-6 -4 -2 0 2 Log@rêmD
0.4

0.6

0.8

1.0

f h-1

T=0TC

T=2.¥ 10-8TC
T=2.¥ 10-5TC

T=1.¥ 10-2TC
T=6.¥ 10-1TC

Figure 2. A typical AdS to Lifshitz domain wall solution (right) and the associated values of κ̃B
and κ̃ω (left). In the right panel we have plotted the metric components

√
f/h (see (2.3)) for a

condensed phase obtained by solving (2.2) with c = 1, q = 3/2, (4.1) with m2L2 = −15/4 (∆ = 5/2)

and u = 7, and (4.2) which corresponds to a critical exponent z = 3.68. The zero temperature

solution (purple) interpolates between an AdS geometry at the boundary (large r) and a Lifshitz

geometry in the deep interior (small r). In the left panel we plot the chiral conductivities κ̃B and

κ̃ω as a function of temperature. The vertical gray line signifies the critical temperature at which

the superfluid phase appears. The remaining red, orange, green and blue vertical lines correspond

to the temperatures exhibited in the right panel. We have also added an inset featuring the low

temperature behavior of κ̃B , where the horizontal axis (temperature) is given in a logarithmic scale.

Typical behavior of the chiral conductivities for a configuration which reduces to an

AdS to Lifshitz domain wall can be found in the left panel of figure 2. Here too the chiral

conductivities approach their universal values monotonically with decreasing temperature

but in contrast to the AdS to AdS domain wall, convergence becomes good only for very

cold configurations; for the solution in figure 2, κ̃B and κ̃ω approach their universal value

as given in (1.9) with 1% accuracy at temperatures T ∼ 10−6Tc. For smaller values of the

critical exponent, z = 2, we found that the chiral conductivities approached their universal

value to within 1% at T ∼ 10−4Tc. It would be interesting to obtain a precise relation

between the rate of convergence of the chiral conductivities to their universal value and

the value of the critical exponent z of the underlying infrared Lifshitz theory.

Our main result (1.9) seems to be robust and raises the question on its validity beyond

the holographic regime. One possibility is that (1.9) are a generic result valid in holographic

theories but valid more generally, much like the shear viscosity to entropy ratio [19] or a

linear combination of second order transport coefficients [23, 24]. Another possibility is

that the relations (1.9) are bona fide and apply to superfluids on a more general level

similar to the relations in (1.2) which were also discovered holographically [3] and then

understood more generally [5]. Possible future directions which may test which of these

two possibilities is the correct one include an analysis similar to the one carried out here

but in a different number of space-time dimensions, a computation of the effects of other

types of anomalies such as the mixed anomaly, or studying the effect of other types of

parity breaking terms in the bulk action which do not generate an anomaly. We leave such

investigations for the future.
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