5 research outputs found

    Cell Compatible Arginine Containing Cationic Polymer: One-Pot Synthesis and Preliminary Biological Assessment

    No full text
    Synthetic cationic polymers are of interest as both nonviral vectors for intracellular gene delivery and antimicrobial agents. For both applications synthetic polymers containing guanidine groups are of special interest since such kind of organic compounds/polymers show a high transfection potential along with antibacterial activity. It is important that the delocalization of the positive charge of the cationic group in guanidine significantly decreases the toxicity compared to the ammonium functionality. One of the most convenient ways for incorporating guanidine groups is the synthesis of polymers composed of the amino acid arginine (Arg) via either application of Arg-based monomers or chemical modification of polymers with derivatives of Arg. It is also important to have biodegradable cationic polymers that will be cleared from the body after their function as transfection or antimicrobial agent is fulfilled. This chapter deals with a two-step/onepot synthesis of a new biodegradable cationic polymer-poly(ethylene malamide) containing L-arginine methyl ester covalently attached to the macrochains in beta-position of the malamide residue via the alpha-amino group. The goal cationic polymer was synthesized by in situ interaction of arginine methyl ester dihydrochloride with intermediary poly(ethylene epoxy succinimide) formed by polycondensation of di-p-nitrophenyl-trans-epoxy succinate with ethylenediamine. The cell compatibility study with Chinese hamster ovary (CHO) and insect Schneider 2 cells (S2) within the concentration range of 0.02-500 mg/mL revealed that the new polymer is not cytotoxic. It formed nanocomplexes with pDNA (120-180 nm in size) at low polymer/DNA weight ratios (WR = 5-10). A preliminarily transfection efficiency of the Arg-containing new cationic polymer was assessed using CHO, S2, H5, and Sf9 cells

    Arginine-Based Biodegradable Ether–Ester Polymers with Low Cytotoxicity as Potential Gene Carriers

    No full text
    The success of gene therapy depends on safe and effective gene carriers. Despite being widely used, synthetic vectors based on poly(ethylenimine) (PEI), poly(l-lysine) (PLL), or poly(l-arginine) (poly-Arg) are not yet fully satisfactory. Thus, both improvement of established carriers and creation of new synthetic vectors are necessary. A series of biodegradable arginine-based ether–ester polycations was developed, which consists of three main classes: amides, urethanes, and ureas. Compared to that of PEI, PLL, and poly-Arg, much lower cytotoxicity was achieved for the new cationic arginine-based ether–ester polymers. Even at polycation concentrations up to 2 mg/mL, no significant negative effect on cell viability was observed upon exposure of several cell lines (murine mammary carcinoma, human cervical adenocarcinoma, murine melanoma, and mouse fibroblast) to the new polymers. Interaction with plasmid DNA yielded compact and stable complexes. The results demonstrate the potential of arginine-based ether–ester polycations as nonviral carriers for gene therapy applications

    Library of cationic polymers composed of polyamines and arginine as gene transfection agents

    No full text
    Combinatorially synthesized materials, especially cationic polymers (CPs), with gene transfection function hold great promise in nanotechnology. However, the main limitations of the existing CPs [such as polyethylenimine (PEI), poly-l-arginine, or polyamidoamine-based dendrimers] as gene transfection agents are high cytotoxicity in the physiological environment. We have developed novel CPs composed of polyamines—endogeneous tetraamine spermine (Spm) and synthetically made triamine N-(2-aminoethyl)-1,3-propanediamine (Apd) for incorporating sec-amino groups and imparting PEI-like structure to the CP backbones. Naturally occurring building blocks such as amino acid arginine (R) was also used for incorporating guanidine-groups into the CPs. The cytotoxicity of resulting CPs—polyureas (PUs) and polyamides such as polysuccinamides and R-attached polymalamides was evaluated using murine and human fibroblasts and carcinoma cell lines. The cell compatibility screening revealed that the CPs made of Apd are less cytotoxic compared to Spm-based analogues. From the novel polymer library, total of six polymers were further studied for oligonucleotide (pDNA) complexation and transfection abilities. Highly water-soluble CPs formed nano-sized polyplexes with pDNA at rather low CP/pDNA weight ratios and showed less cytotoxicity and higher transfection ability compared to widely used PEI as well as commercially available transfection agents. Furthermore, new CPs showed selective transfection activity toward certain cell lines (4T1, HeLa, NIH3T3, and CCD 27SK), which is important for their potential applications in gene therapy

    Arginine-Based Biodegradable Ether–Ester Polymers with Low Cytotoxicity as Potential Gene Carriers

    No full text
    The success of gene therapy depends on safe and effective gene carriers. Despite being widely used, synthetic vectors based on poly­(ethylenimine) (PEI), poly­(l-lysine) (PLL), or poly­(l-arginine) (poly-Arg) are not yet fully satisfactory. Thus, both improvement of established carriers and creation of new synthetic vectors are necessary. A series of biodegradable arginine-based ether–ester polycations was developed, which consists of three main classes: amides, urethanes, and ureas. Compared to that of PEI, PLL, and poly-Arg, much lower cytotoxicity was achieved for the new cationic arginine-based ether–ester polymers. Even at polycation concentrations up to 2 mg/mL, no significant negative effect on cell viability was observed upon exposure of several cell lines (murine mammary carcinoma, human cervical adenocarcinoma, murine melanoma, and mouse fibroblast) to the new polymers. Interaction with plasmid DNA yielded compact and stable complexes. The results demonstrate the potential of arginine-based ether–ester polycations as nonviral carriers for gene therapy applications
    corecore