3 research outputs found

    Increased ventilation of Antarctic deep water during the warm mid-Pliocene

    Get PDF
    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.publishedVersio

    Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean

    Get PDF
    We demonstrate that the carbon isotopic signal of mid-depth waters evolved differently from deep waters in the South Atlantic sector of the Southern Ocean during the Pleistocene. Deep sites (>3700 m) exhibit large glacial-to-interglacial variations in benthic d13C, whereas the amplitude of the d13C signal at Site 1088 (2100 m water depth) is small. Unlike the deep sites, at no time during the Pleistocene were benthic d13C values at Site 1088 lower than those of the deep Pacific. Reconstruction of intermediate-todeep d13C gradients (D13CI-D) supports the existence of a sharp chemocline between 2100 and 2700 m during most glacial stages of the last 1.1 myr. This chemical divide in the glacial Southern Ocean separated well-ventilated water above 2500 m from poorly ventilated water below. The D13CI-D signal parallels the Vostok atmospheric pCO2 record for the last 400 kyr, lending support to physical models that invoke changes in Southern Ocean deep water ventilation as a mechanism for changing atmospheric pCO2. The emergence of a strong 100-kyr cycle in D13CI-D during the mid-Pleistocene supports a change in vertical fractionation and deep-water ventilation rates in the Southern Ocean, and is consistent with possible CO2- forcing of this climate transition. Components: 7562 words, 14 figures, 2 tables

    Increased ventilation of Antarctic deep water during the warm mid-Pliocene

    No full text
    The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features
    corecore