169 research outputs found

    Field theoretic description of charge regulation interaction

    Full text link
    In order to find the exact form of the electrostatic interaction between two proteins with dissociable charge groups in aqueous solution, we have studied a model system composed of two macroscopic surfaces with charge dissociation sites immersed in a counterion-only ionic solution. Field-theoretic representation of the grand canonical partition function is derived and evaluated within the mean-field approximation, giving the Poisson-Boltzmann theory with the Ninham-Parsegian boundary condition. Gaussian fluctuations around the mean-field are then analyzed in the lowest order correction that we calculate analytically and exactly, using the path integral representation for the partition function of a harmonic oscillator with time-dependent frequency. The first order (one loop) free energy correction gives the interaction free energy that reduces to the zero-frequency van der Waals form in the appropriate limit but in general gives rise to a mono-polar fluctuation term due to charge fluctuation at the dissociation sites. Our formulation opens up the possibility to investigate the Kirkwood-Shumaker interaction in more general contexts where their original derivation fails.Comment: 12 pages, 9 figures, submitted to EPJ

    The effect of large-decoherence on mixing-time in Continuous-time quantum walks on long-range interacting cycles

    Full text link
    In this paper, we consider decoherence in continuous-time quantum walks on long-range interacting cycles (LRICs), which are the extensions of the cycle graphs. For this purpose, we use Gurvitz's model and assume that every node is monitored by the corresponding point contact induced the decoherence process. Then, we focus on large rates of decoherence and calculate the probability distribution analytically and obtain the lower and upper bounds of the mixing time. Our results prove that the mixing time is proportional to the rate of decoherence and the inverse of the distance parameter (\emph{m}) squared. This shows that the mixing time decreases with increasing the range of interaction. Also, what we obtain for \emph{m}=0 is in agreement with Fedichkin, Solenov and Tamon's results \cite{FST} for cycle, and see that the mixing time of CTQWs on cycle improves with adding interacting edges.Comment: 16 Pages, 2 Figure

    Semiclassical Casimir Energies at Finite Temperature

    Get PDF
    We study the dependence on the temperature T of Casimir effects for a range of systems, and in particular for a pair of ideal parallel conducting plates, separated by a vacuum. We study the Helmholtz free energy, combining Matsubara's formalism, in which the temperature appears as a periodic Euclidean fourth dimension of circumference 1/T, with the semiclassical periodic orbital approximation of Gutzwiller. By inspecting the known results for the Casimir energy at T=0 for a rectangular parallelepiped, one is led to guess at the expression for the free energy of two ideal parallel conductors without performing any calculation. The result is a new form for the free energy in terms of the lengths of periodic classical paths on a two-dimensional cylinder section. This expression for the free energy is equivalent to others that have been obtained in the literature. Slightly extending the domain of applicability of Gutzwiller's semiclassical periodic orbit approach, we evaluate the free energy at T>0 in terms of periodic classical paths in a four-dimensional cavity that is the tensor product of the original cavity and a circle. The validity of this approach is at present restricted to particular systems. We also discuss the origin of the classical form of the free energy at high temperatures.Comment: 17 pages, no figures, Late

    Dynamic exchange-correlation potentials for the electron gas in dimensionality D=3 and D=2

    Full text link
    Recent progress in the formulation of a fully dynamical local approximation to time-dependent Density Functional Theory appeals to the longitudinal and transverse components of the exchange and correlation kernel in the linear current-density response of the homogeneous fluid at long wavelength. Both components are evaluated for the electron gas in dimensionality D=3 and D=2 by an approximate decoupling in the equation of motion for the current density, which accounts for processes of excitation of two electron-hole pairs. Each pair is treated in the random phase approximation, but the role of exchange and correlation is also examined; in addition, final-state exchange processes are included phenomenologically so as to satisfy the exactly known high-frequency behaviours of the kernel. The transverse and longitudinal spectra involve the same decay channels and are similar in shape. A two-plasmon threshold in the spectrum for two-pair excitations in D=3 leads to a sharp minimum in the real part of the exchange and correlation kernel at twice the plasma frequency. In D=2 the same mechanism leads to a broad spectral peak and to a broad minimum in the real part of the kernel, as a consequence of the dispersion law of the plasmon vanishing at long wavelength. The numerical results have been fitted to simple analytic functions.Comment: 13 pages, 11 figures included. Accepted for publication in Phys. Rev.

    Casimir force on amplifying bodies

    Full text link
    Based on a unified approach to macroscopic QED that allows for the inclusion of amplification in a limited space and frequency range, we study the Casimir force as a Lorentz force on an arbitrary partially amplifying system of linearly locally responding (isotropic) magnetoelectric bodies. We demonstrate that the force on a weakly polarisable/magnetisable amplifying object in the presence of a purely absorbing environment can be expressed as a sum over the Casimir--Polder forces on the excited atoms inside the body. As an example, the resonant force between a plate consisting of a dilute gas of excited atoms and a perfect mirror is calculated

    Partially Annealed Disorder and Collapse of Like-Charged Macroions

    Full text link
    Charged systems with partially annealed charge disorder are investigated using field-theoretic and replica methods. Charge disorder is assumed to be confined to macroion surfaces surrounded by a cloud of mobile neutralizing counterions in an aqueous solvent. A general formalism is developed by assuming that the disorder is partially annealed (with purely annealed and purely quenched disorder included as special cases), i.e., we assume in general that the disorder undergoes a slow dynamics relative to fast-relaxing counterions making it possible thus to study the stationary-state properties of the system using methods similar to those available in equilibrium statistical mechanics. By focusing on the specific case of two planar surfaces of equal mean surface charge and disorder variance, it is shown that partial annealing of the quenched disorder leads to renormalization of the mean surface charge density and thus a reduction of the inter-plate repulsion on the mean-field or weak-coupling level. In the strong-coupling limit, charge disorder induces a long-range attraction resulting in a continuous disorder-driven collapse transition for the two surfaces as the disorder variance exceeds a threshold value. Disorder annealing further enhances the attraction and, in the limit of low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
    corecore