238 research outputs found

    Atomic resonance interaction in dielectric media

    No full text
    The retarded resonance interaction in dielectric media between a ground state atom and an excited atom were investigated. The whole system was represented by a superposition of states:symmetric and antisymmetric with respect to interchange of atoms. While the antisymmetric state can be long lived, the asymmetric state is likely to decay into two ground state atoms. The retarded limit large deviations were demonstrated

    Resonance Interaction Induced by Metal Surfaces Catalyses Atom Pair Breakage

    Full text link
    We present the theory for retarded resonance interaction between two identical atoms at arbitrary positions near a metal surface. The dipole-dipole resonance interaction force that binds isotropically excited atom pairs together in free space may turn repulsive close to an ideal (totally reflecting) metal surface. On the other hand, close to an infinitely permeable surface it may turn more attractive. We illustrate numerically how the dipole-dipole resonance interaction between two oxygen atoms near a metal surface may provide a repulsive energy of the same order of magnitude as the ground-state binding energy of an oxygen molecule. As a complement we also present results from density-functional theory.Comment: 5 pages, 5 figure

    Superfluidity in the Solar Interior: Implications for Solar Eruptions and Climate

    Get PDF
    Efforts to understand unusual weather or abrupt changes in climate have been plagued by deficiencies of the standard solar model (SSM) [1]. Although it assumes that our primary source of energy began as a homogeneous ball of hydrogen (H) with a steady, well-behaved H-fusion reactor at its core, observations instead reveal a very heterogeneous, dynamic Sun. As examples, the upward acceleration and departure of H+ ions from the surface of the quiet Sun and abrupt climatic changes, including geomagnetic reversals and periodic magnetic storms that eject material from the solar surface are not explained by the SSM. The present magnetic fields are probably deep-seated remnants of very ancient origin. These could have been generated from two mechanisms. These are (1) Bose-Einstein condensation [2] of iron-rich, zero-spin material into a rotating, superfluid, superconductor surrounding the solar core and/or (2) superfluidity and quantized vortices in nucleon-paired Fermions at the core [3]

    Virus and bacteria inactivation by CO2 bubbles in solution

    Get PDF
    The availability of clean water is a major problem facing the world. In particular, the cost and destruction caused by viruses in water remains an unresolved challenge and poses a major limitation on the use of recycled water. Here, we develop an environmentally friendly technology for sterilising water. The technology bubbles heated un-pressurised carbon dioxide or exhaust gases through wastewater in a bubble column, effectively destroying both bacteria and viruses. The process is extremely cost effective, with no concerning by-products, and has already been successfully scaled-up industrially.We thank the University of New South Wales, along with The Australian Research Council (ARC grant number DP160100198) and the Australian Government (Australian Postgraduate Award scholarship for the first author)

    Hofmeister Effects in Enzymatic Activity: Weak and Strong Electrolyte Influences on the Activity of Candida rugosa Lipase

    Get PDF
    The effects of weak and strong electrolytes on the enzymatic activity of Candida rugosa lipase are explored. Weak electrolytes, used as buffers, set the pH, while strong electrolytes regulate the ionic strength. The interplay between pH and ionic strength has been assumed to be the determinant of enzymatic activity. In experiments that probe activities by varying these parameters, there has been little attention focused on the role of specific electrolyte effects. Here we show that both buffers and the choice of background electrolyte ion strongly affect the enzymatic activity of Candida rugosa lipase. The effects here shown are dramatic at high salt concentration; indeed, a 2 M concentration of NaSCN is able to fully inactivate the lipase. By contrast, Na2-SO4 acts generally as an activator, whereas NaCl shows a quasi-neutral behavior. Such specific ion effects are well-known and are classified among the "Hofmeister effects". However, there has been little awareness of them, or of their potential for optimization of activities in the enzyme community. Rather than the effects per se, the focus here is on their origin. New insights into mechanism are proposed

    Two sides of the coin. Part 2. Colloid and surface science meets real biointerfaces

    Get PDF
    Part 1 revisited developments in lipid and surfactant self assembly over the past 40 years [1]. New concepts emerged. Here we explore how these developments can be used to make sense of and bring order to a range of complex biological phenomena. Together with Part 1, this contribution is a fundamental revision of intuition at the boundaries of Colloid Science and Biological interfaces from a perspective of nearly 50 years. We offer new insights on a unified treatment of self assembly of lipids, surfactants and proteins in the light of developments presented in Part 1. These were in the enabling disciplines in molecular forces, hydration, oil and electrolyte specificity; and in the role of non Euclidean geometries-across the whole gammut of physical, colloid and surface chemistry, biophysics and membrane biology and medicine. It is where the early founders of the cell theory of biology and the physiologists expected advances to occur as D'Arcy Thompson predicted us 100 years ago

    A Correspondence Principle

    Get PDF
    A single mathematical theme underpins disparate physical phenomena in classical, quantum and statistical mechanical contexts. This mathematical “correspondence principle”, a kind of wave–particle duality with glorious realizations in classical and modern mathematical analysis, embodies fundamental geometrical and physical order, and yet in some sense sits on the edge of chaos. Illustrative cases discussed are drawn from classical and anomalous diffusion, quantum mechanics of single particles and ideal gases, quasicrystals and Casimir forces. Permission to reproduce: Republished from Physica A, 2016, 443, 495-517. With permission from Elsevier. Copyright 201

    Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces

    Get PDF
    Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the 'endothelial surface layer' or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a 'lung' in miniature. This interpretation may have far-reaching consequences for physiology
    corecore