24 research outputs found

    Multiobjective optimization algorithm for accurate MADYMO reconstruction of vehicle-pedestrian accidents

    Get PDF
    In vehicle–pedestrian accidents, the preimpact conditions of pedestrians and vehicles are frequently uncertain. The incident data for a crash, such as vehicle deformation, injury of the victim, distance of initial position and rest position of accident participants, are useful for verification in MAthematical DYnamic MOdels (MADYMO) simulations. The purpose of this study is to explore the use of an improved optimization algorithm combined with MADYMO multibody simulations and crash data to conduct accurate reconstructions of vehicle–pedestrian accidents. The objective function of the optimization problem was defined as the Euclidean distance between the known vehicle, human and ground contact points, and multiobjective optimization algorithms were employed to obtain the local minima of the objective function. Three common multiobjective optimization algorithms—nondominated sorting genetic algorithm-II (NSGA-II), neighbourhood cultivation genetic algorithm (NCGA), and multiobjective particle swarm optimization (MOPSO)—were compared. The effect of the number of objective functions, the choice of different objective functions and the optimal number of iterations were also considered. The final reconstructed results were compared with the process of a real accident. Based on the results of the reconstruction of a real-world accident, the present study indicated that NSGA-II had better convergence and generated more noninferior solutions and better final solutions than NCGA and MOPSO. In addition, when all vehicle-pedestrian-ground contacts were considered, the results showed a better match in terms of kinematic response. NSGA-II converged within 100 generations. This study indicated that multibody simulations coupled with optimization algorithms can be used to accurately reconstruct vehicle-pedestrian collisions

    Application of postmortem computed tomography angiography to settle a medical dispute after aortic dissection surgery: a forensic case report

    No full text
    Abstract Background In the present case, we applied postmortem computed tomography angiography (PMCTA) in a medical dispute involving sudden death after cardiovascular surgery. Case presentation A 39-year-old man underwent aortic arch replacement combined with stented elephant trunk implantation surgery under extracorporeal circulation. All vital signs were stable and he was arranged for discharge seven days after surgery. Several days later, the patient was sent back to the hospital for chest pain and poor appetite. Unfortunately, his condition worsened and he ultimately died. PMCT scanning detect pericardial effusion. Family members suspected that the surgical sutures were not dense enough, causing the patient’s postoperative bleeding and resulting in cardiac tamponade and death. PMCTA was performed before autopsy, which showed pericardial effusion. However, postmortem angiography with simulated blood pressure showed no leakage of contrast agent, which guided the subsequent autopsy and histological examinations. Conclusions While many previous postmortem imaging case reports have shown positive results that provided evidence of medical malpractice, the current case excludes the possibility of physician negligence and reasonably settles the medical dispute from another perspective. In short, the PMCTA approach we describe here was an effective tool that can be applied to certain medical-related forensic cases

    Postmortem chest computed tomography for the diagnosis of drowning: a feasibility study

    No full text
    It may be difficult to distinguish the cause of death in drowning cases without specific findings. The aim of this study was to explore the forensic value of thoracic postmortem computed tomography (PMCT) using routine images and three-dimensional (3D) image reconstructions. The imaging data of PMCT examinations of six drowning cadavers, aged 21–54 years, were analyzed. Twelve victims of sudden death from coronary artery disease (CAD) were chosen as a control group. After 3D bilateral lung images were reconstructed using image processing software, an interactive medical image control system was used to measure and analyze parameters including lung volume, lung volume ratio, mean CT value of the whole lung, and lung CT value distribution curves. Lung volume and lung volume ratio were used to assess the shape changes of the lung. Lung CT value distribution curves showed the corresponding number of pixels of the different CT values in the lung image. Lung volume was not significantly larger in drowning cases (mean 2 958 cm3) than in controls (mean 2 342 cm3). Lung volume ratio values in the drowning group (mean 0.3156) were greater than those in the control group (mean 0.2763); (P = 0.02). There was no significant difference between the drowning and control group in the mean CT value of the whole lung. There were differences between lung CT value distribution curves in drowning victims and controls, with drowning victims showing a single peak and CAD cases showing a bimodal distribution. Thoracic PMCT is helpful for the forensic medical diagnosis of drowning. Lung volume ratio and lung CT value distribution are potential indicators to distinguish between drowning and CAD

    Table1_Multiobjective optimization algorithm for accurate MADYMO reconstruction of vehicle-pedestrian accidents.DOCX

    No full text
    In vehicle–pedestrian accidents, the preimpact conditions of pedestrians and vehicles are frequently uncertain. The incident data for a crash, such as vehicle deformation, injury of the victim, distance of initial position and rest position of accident participants, are useful for verification in MAthematical DYnamic MOdels (MADYMO) simulations. The purpose of this study is to explore the use of an improved optimization algorithm combined with MADYMO multibody simulations and crash data to conduct accurate reconstructions of vehicle–pedestrian accidents. The objective function of the optimization problem was defined as the Euclidean distance between the known vehicle, human and ground contact points, and multiobjective optimization algorithms were employed to obtain the local minima of the objective function. Three common multiobjective optimization algorithms—nondominated sorting genetic algorithm-II (NSGA-II), neighbourhood cultivation genetic algorithm (NCGA), and multiobjective particle swarm optimization (MOPSO)—were compared. The effect of the number of objective functions, the choice of different objective functions and the optimal number of iterations were also considered. The final reconstructed results were compared with the process of a real accident. Based on the results of the reconstruction of a real-world accident, the present study indicated that NSGA-II had better convergence and generated more noninferior solutions and better final solutions than NCGA and MOPSO. In addition, when all vehicle-pedestrian-ground contacts were considered, the results showed a better match in terms of kinematic response. NSGA-II converged within 100 generations. This study indicated that multibody simulations coupled with optimization algorithms can be used to accurately reconstruct vehicle-pedestrian collisions.</p

    Blunt liver injury with intact ribs under impacts on the abdomen: a biomechanical investigation.

    Get PDF
    Abdominal trauma accounts for nearly 20% of all severe traffic injuries and can often result from intentional physical violence, from which blunt liver injury is regarded as the most common result and is associated with a high mortality rate. Liver injury may be caused by a direct impact with a certain velocity and energy on the abdomen, which may result in a lacerated liver by penetration of fractured ribs. However, liver ruptures without rib cage fractures were found in autopsies in a series of cases. All the victims sustained punches on the abdomen by fist. Many studies have been dedicated to determining the mechanism underlying hepatic injury following abdominal trauma, but most have been empirical. The actual process and biomechanism of liver injury induced by blunt impact on the abdomen, especially with intact ribs remained, are still inexhaustive. In order to investigate this, finite element methods and numerical simulation technology were used. A finite element human torso model was developed from high resolution CT data. The model consists of geometrically-detailed liver and rib cage models and simplified models of soft tissues, thoracic and abdominal organs. Then, the torso model was used in simulations in which the right hypochondrium was punched by a fist from the frontal, lateral, and rear directions, and in each direction with several impact velocities. Overall, the results showed that liver rupture was primarily caused by a direct strike of the ribs induced by blunt impact to the abdomen. Among three impact directions, a lateral impact was most likely to cause liver injury with a minimum punch speed of 5 m/s (the momentum was about 2.447 kg.m/s). Liver injuries could occur in isolation and were not accompanied by rib fractures due to different material characteristics and injury tolerance

    PMCTA, autopsy and histological findings of a single cadaver.

    No full text
    <p>A. PMCTA results showed a leakage of the contrast agent from the C3 segment of the left internal carotid artery (arrow) into the adjacent left sphenoid sinus (circle), suggesting an aneurysm. B. An aneurysm inside the left sphenoid sinus (arrow) was confirmed by autopsy, consistent to the PMCTA results.</p

    PMCTA and autopsy results of a single cadaver.

    No full text
    <p>A. PMCTA results showed no visualization of the distal part of the right vertebral artery, while good demonstration of the left vertebral artery (arrowhead) was obtained. B. PMCTA results showed no visualization of the basilar artery (arrowhead). C. During autopsy, the distal part of the right vertebral artery and basilar artery were found dilated and embolized (black arrows), while the left vertebral artery remained normal (white arrow). D. Histological examination confirming thromboembolism in the distal part of the right vertebral artery. (H&E Ă—40). E. Histological examination confirming thromboembolism in the basilar artery. (H&E Ă—20).</p
    corecore