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In vehicle–pedestrian accidents, the preimpact conditions of pedestrians and

vehicles are frequently uncertain. The incident data for a crash, such as vehicle

deformation, injury of the victim, distance of initial position and rest position of

accident participants, are useful for verification in MAthematical DYnamic

MOdels (MADYMO) simulations. The purpose of this study is to explore the

use of an improved optimization algorithm combined with MADYMOmultibody

simulations and crash data to conduct accurate reconstructions of

vehicle–pedestrian accidents. The objective function of the optimization

problem was defined as the Euclidean distance between the known vehicle,

human and ground contact points, and multiobjective optimization algorithms

were employed to obtain the local minima of the objective function. Three

common multiobjective optimization algorithms—nondominated sorting

genetic algorithm-II (NSGA-II), neighbourhood cultivation genetic algorithm

(NCGA), and multiobjective particle swarm optimization (MOPSO)—were

compared. The effect of the number of objective functions, the choice of

different objective functions and the optimal number of iterations were also

considered. The final reconstructed results were compared with the process of

a real accident. Based on the results of the reconstruction of a real-world

accident, the present study indicated that NSGA-II had better convergence and

generated more noninferior solutions and better final solutions than NCGA and

MOPSO. In addition, when all vehicle-pedestrian-ground contacts were

considered, the results showed a better match in terms of kinematic

response. NSGA-II converged within 100 generations. This study indicated

that multibody simulations coupled with optimization algorithms can be

used to accurately reconstruct vehicle-pedestrian collisions.
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1 Introduction

The Global Status Report on Road Safety released by the

World Health Organization indicates that approximately

1.35 million people die in road traffic crashes each year

(WHO, 2018). Traffic accidents are one of the main causes of

death in China, and pedestrians are an extremely vulnerable

group during vehicle impacts. Once an accident occurs, there are

disputes regarding responsibility for the accident and

compensation for vehicle deformation and personal injury.

Traffic police must identify the responsible party or parties to

resolve these disputes. The traditional forensic methods that

determine the process of an accident are mainly based on

traces of evidence at the scene, vehicle deformations and

injuries of the victims. Such empirical inference is subjective

and sometimes controversial.

In recent years, multibody (MB) models and numerous

other methods have become prevalent for reconstructing

traffic accidents. J.R. Elliott et al. (Elliott et al., 2012) used

the MAthematical DYnamic MOdels (MDAYMO) MB

pedestrian model to quantitatively analyse the influences of

vehicle speed, pedestrian speed and pedestrian gait on the

transverse translation of the pedestrian’s head, head rotation

about the vertical head axis and head impact velocity. Zou

et al. (2019) reconstructed the kinematics of a scooter-

microvan accident involving three riders by using

MADYMO MB simulation software and explored the

differences in injury risks and characteristics of scooter

drivers and passengers, succeeding in identifying the driver

as the party responsible for the accident. To investigate the

characteristics of pedestrian head-vehicle contact boundary

conditions and risk of pedestrian head injury as functions of

kinematic-based criteria and lower extremity injuries,

previous studies (Li et al., 2021a; Panday et al., 2021) have

reconstructed many collision cases and applied MB modelling

to reconstruct pedestrian kinematics in real-word collisions.

Previous studies show that numerical simulation methods can

be used to quickly and objectively reconstruct the accident

process.

The process of reconstruction is a process of reduction to the

best hypothesis, which requires many iterative studies to establish

the most likely crash configuration. Although numerical

simulations have been increasingly performed, the most

common approach is still the trial-and-error method. Such a

method has low efficiency and is greatly affected by analysts. In

addition, the preimpact parameters and traces of crashes are not

comprehensively analysed. The key challenges to applying

simulation methods to reconstruct traffic accidents are

constructing human-vehicle simulation models that resemble

the real accident and obtaining accurate initial collision

parameters while preventing the influence of subjective

human factors. Our previous study (Sun et al., 2017)

developed an improved method for using MADYMO MB

simulation software and an optimization method (genetic

algorithm) to reconstruct a real vehicle–bicycle accident.

However, the input conditions and parameters for optimizing

the simulation process by using algorithms were not fully

considered. The optimization efficiency of different algorithms

is another issue.

To ensure the accuracy of accident reconstruction, it is

necessary to investigate the optimal design of initial collision

parameters, which should simultaneously consider multiple

parameter factors. We need to construct a multiobjective

optimial design of the established accident model. The

multiobjective optimization method shows its advantages in

the processing of many problems in military applications, the

automobile, ship, and aerospace industries and other fields

(Ishida et al., 2011; Dai et al., 2019; Gobeyn and Goethals,

2019; Dong et al., 2021; Shirazi et al., 2021). Presently, the

most popular multiobjective genetic algorithms are the

Nondominated Sorting Genetic Algorithm II (NSGA-II)

(Deb et al., 2002), Neighbourhood Cultivation Genetic

Algorithm (NCGA) (Watanabe et al., 2002) and Multi-

Objective Particle Swarm Optimization (MOPSO)

algorithm (Mostaghim and Teich, 2003). NSGA-II and

NCGA are nonnormalized methods that are commonly

utilized in multiobjective optimization design. These

multiobjective genetic algorithms can simultaneously

optimize several objective functions while maintaining the

diversity of the solutions. MOPSO (Feng et al., 2013), which

was proposed in 2004, applies particle swarm optimization

(PSO), which can be applied only for a single object to

multiple targets and has become a controversial topic in

the modern optimization field.

Because of the shortcomings of previous human-vehicle

collision reconstruction methods and the continuous

development of optimization methods, this study compares

the optimization effects of three multiobjective algorithms on

the multi-rigid-body simulation results for traffic accidents and

conducts optimization design research on the initial parameters

of a the collision. In this way, the conditions for the application of

different algorithms can be obtained, and the accuracy of

accident reconstruction can be improved.

2 Methods and materials

2.1 Optimization methods for accident
reconstruction

Traffic accident reconstruction can be represented using

known accident data, such as the braking distance of the

vehicle, the distance the pedestrian was thrown, the

deformation of the vehicle, the injury of the human body, the

pedestrian posture and motion at the time of impact, and videos

and data from attached active safety equipment, to reconstruct
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the accident process. Thus, the reconstruction problem can be

considered as a multiobjective mathematical optimization

problem, which is expressed in standard form:

Min  F x( ) � F f1 x( ), f2 x( ),/, fn x( ){ }, (1)
f x( ) � dmarker

∣∣∣∣tmarker, aj ≤x≤ bj,   j � 1, 2,/, k, (2)
Ci ≤gi x( )≤ ei,   i � 1, 2,/, k, (3)

where F (x), f (x) is the objective function and subobjectives

identify the quantities to be minimized; aj and bj represent the

upper limit and lower limit of the optimization variable x,

respectively; and dmarker is the relative Euclidean distance

between the human marker and markers on the vehicle and

the ground at the time of impact tmarker. The functions gi (x) are

constraint functions that can be used to define the ranges of the

design constraints.

The workflow of accident reconstruction optimization is shown

in Figure 1. First, MB and facet models were built based on accident

data. Second, preimpact parameters that affected the accident

results, such as vehicle speed, human orientation with respect to

the vehicle and head position of the pedestrian, were treated as initial

design variables. Last, multiobjective genetic algorithms, such as

NSGA-II, NCGA, MOPSO, were used to obtain optimal solutions.

Each simulation of the multi-rigid-body model was set to terminate

at 1.8 s.

2.2 Typical accident reconstruction

2.2.1 Case report
Data required for accident reconstruction were provided by the

Academy of Forensic Science in Shanghai, including detailed

FIGURE 1
Workflow of traffic accident reconstruction and optimization.
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documents about police investigations, witness testimonies, litigant

statements, and a video record. The postmortem examination and

vehicle inspection were performed by the Academy of Forensic

Science. This study was approved by the Ethical Committee of the

Academy of Forensic Science. All experiments were performed in

accordance with relevant guidelines and regulations, and informed

consent was obtained from the families of the deceased. There was a

video from the roadside recording of the entire collision. The frame

rate of the video was 16 frames per second, and the video resolution

was 1,280 × 720 pixels. The accident is described as follows. At 7:

00 p.m., an 18-year-old male was crossing a highway from north to

southwhen hewas struck by a Citroen vehiclemoving from the west

to the east on the highway. The cause of death of the pedestrianwas a

severe traumatic brain injury. The main injuries suffered by the

victim were documented as follows (Figure 2):

• Scalp contusions and fractures on the left parietal-occipital

• Right shoulder dislocation and bruises

• Fracture of the lower part of the right femur, a square

imprint bruise on the right thigh and a strip contusion on

the right calf

• Numerous abrasions on other parts of the body

Deformations of the involved vehicle were mainly

concentrated on its front left side. The lower left side of the

windshield was radially cracked. The paint was scuffed, and there

was an impact fracture on the lower left side of the front bumper.

Depressions were observed at the leading edge of the bonnet

(Figure 2).

2.2.2 On-site reconstruction by UAV aerial
photography

We selected the commercial DJI Inspire 2 (DJI, China) to

document the accident scene in three steps. First, we calibrated

the unmanned aerial vehicle (UAV) positioning system and

camera if it had undergone long-distance transportation.

Second, we planned the aerial photography route according to

the site conditions and battery reserve. The flight height over the

general accident scene was 30 m so that the drone could take

high-resolution photographs while avoiding obstacles. The

horizontal and vertical aerial image overlap rate was 80%.

Third, we imported the aerial image into Context Capture

FIGURE 2
Pedestrian injuries and vehicle damages in different stages after vehicle-pedestrian traffic accidents. The contact between the pedestrian’s right
thigh and the bumper cover is indicated in red, the contact between the pedestrian’s calf and the bumper is indicated in blue, the contact between
the pedestrian’s shoulder joint and the windshield is indicated in yellow, and green indicates the first contact between the pedestrian’s head and the
ground.
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software (Bentley, United States) to complete the construction of

a 3D geometric model.

2.2.3 Modelling
The MADYMO 50th percentile male model developed by

Netherlands Organization (TNO), which consisted of 52 rigid

bodies and had an outer surface described by 64 ellipsoids and

two planes, was chosen as the human model. The model was

developed and validated and was determined to satisfy the

available biofidelity requirements in terms of kinematics,

impactor forces, and accelerations in several body parts

(Happee et al., 1998; Happee et al., 2000; Coley et al., 2001).

Numerous attempts to use the 50th percentile model in

reconstructions of real collisions showed that the model

accurately predicted the global kinematics and impact points

on the vehicle (TASS, 2013). To match the height and weight of

the accident victim, we used the Generator of Body Data

(GEBOD) method to scale the human model. The posture of

the pedestrian was adjusted according to the previous frame of

the video when the vehicle hit the pedestrian. We adjusted the

hinge angles of the shoulder, elbow, hip, knee, ankle and head-

neck joints so that the posture of the human model matched the

posture of the pedestrian in the accident (arms bent inserted in

the pockets, right leg in front and left leg behind in a walking gait,

and body leaning slightly to the left).

Faro Focus 3D S120 laser scanning with an accuracy range of

2 mm and postprocessing software FARO SCENE (FARO,

United States) were used to scan the accident vehicle and

obtain point cloud data that were processed in Geomagic

2017 software (3D Systems Corporation, America). The point

cloud model was encapsulated to obtain a polyhedral model.

Then, Hypermesh 2019 software (Altair Engineering Inc.,

America) was employed to process a mesh and form a finite

element surface model of the vehicle. The node and unit data in

the obtained K file of the finite element surface model were

imported into the vehicle file built in MADYMO, and a facet

model of the vehicle was obtained. This method ensured the

accuracy of the geometry of the model vehicle. The European

New Car Assessment Programme (EuroNCAP) database

(Martinez et al., 2007) divided the front structure of a vehicle

into three zones based on its aggressiveness against pedestrians.

The contact stiffness characteristics of the front part of the model

vehicle were selected based on structural stiffness test results

from EuroNCAP for similar vehicles. One such matrix model of

the crash reconstruction is shown in Figure 3. The simplified

force deflection data for the bumper area were derived from the

legform test, while the bonnet front area was obtained from the

upper legform tests, and the bonnet middle area, bonnet rear area

and windscreen were derived from the headform test.

2.2.4 Prediction of impact speed based on the
video

We played and analysed the continuous surveillance video

using VOIT software (Hikvision, China). The virtual location

method (Jiao et al., 2018) was utilized to match the location of the

vehicle in the video with the scene of scanning reconstruction,

and the reference lines were set to calculate the speed of the

vehicle before the collision (Figure 4). The following contents

FIGURE 3
Process of reverse reconstruction of the vehicle model.
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were displayed in sequence according to the playing time; the

video frame rate was 16 frames per second. According to

Figure 4, before the collision, the reference distance between

the vehicle in the 1st frame and the vehicle in the 17th frame was

approximately 17.96 m, which was measured with the 3D model

of the accident scene by UAV photography. The following

formula (Feng et al., 2018) was used to calculate the vehicle

speed, and the known parameters were substituted into the

formula to calculate the vehicle speed in the human-vehicle

collision. This velocity was a preliminary estimate. Therefore,

we set the range of the velocity variable to [16 m/s and 20 m/s].

v � 1
t
≈

17.96

17 − 1( ) × 1
16( )

� 17.96m/s. (4)

2.2.5 Setting of the friction coefficient
In this case, the accident occurred on a rainy day and on wet

asphalt pavement. After the collision, the pedestrian was thrown

onto the ground on the left side of the vehicle. The friction

coefficient between the wheels and the ground in this study was

obtained by substituting the regression formula in the literature

(Zheng et al., 2011) according to the tire condition, the material

of the road surface, the temperature of the road surface and the

humidity. The friction coefficients between the pedestrian and

the ground, and between the pedestrian and the vehicle were also

obtained from the literature (Mondal et al., 2016). The friction

coefficients between the vehicle and the ground, between the

pedestrian and the ground, and between the pedestrian and the

vehicle were respectively 0.55, 0.6, and 0.3, respectively.

2.3 Determine the range of the
optimization variables

Five optimization variables were set in the optimizations

according to a previous study concerning accident reconstruction

FIGURE 4
Measurement and calculation of vehicle collision speed. (A) Screenshot of surveillance video along the road (times interval: 16 frames). (B) 3D
documentation of the incident scene by the UAV.

FIGURE 5
Schematic of the optimization model (A) Different initial
collision parameters (optimization variables) (B) Positions of the
four collision marker point pairs.
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(Wang et al., 2021a), as shown in Figure 5A, including the initial

speed of the vehicle-pedestrian collision (V), the distance of the

pedestrian relative to the long axis of the vehicle (D), the angle of

the pedestrian relative to the collision vehicle (α), the angle of the
human head posture turning up-down (β) and the angle of left-

right rotation (γ). The range of optimization variables and their

initial values determined according to the posture of the subjects

in the video are shown in Table 1.

2.4 Design of experiments

Different preimpact parameters lead to different accident

processes and personal injuries. According to inspections of

the human body and vehicle and a survey of the site, we

selected the characteristic injuries on the corpse to match the

deformation of the vehicle and trace of the site. We set up four

pairs of markers, including three pairs of contact points

between the vehicle and the pedestrian, and one pair of

contact points between the pedestrian and the ground. The

locations of the four groups of collision points are listed in

Table 2. The four subobjectives represent the relative

distances between each group of markers. The objective

function was the sum of the four subobjectives. In each

optimization design, constraints of the distance between

each group of collision markers were set from 0 m to 2 m.

We assumed that distances beyond these constraints did not

correspond to reality and that when the objective function

approached a minimum, the reconstruction resembled the

real accident. The initial relative positions of the pedestrian

and vehicle were adjusted based on video data. The final

numerical model is shown in Figure 5B.

The purpose of this study was to explore how to use an

improved optimization algorithm combined with MADYMO

MB simulations and crash data to accurately reconstruct

vehicle–pedestrian accidents. Traffic accidents are such

complex events that we cannot acquire complete accident

data. Thus, the key challenges were determining how the

objective functions affected the reconstruction results and

which multiobjective optimization algorithm achieved better

performance. Three widely utilized algorithms—NSGA-II,

NCGA, and MOPSO algorithm—were considered for the

accident reconstruction. Theoretically, as more collision

contact marker pairs were employed for matching, the more

complete the reconstructed information matched to the accident

and the better the reconstruction. Based on the established

human-vehicle collision model, four subobjectives were used

to investigate which algorithm provided better performance

for accident reconstruction optimization. In addition,

11 optimization groups were set according to the number of

subobjectives and different contact marker combinations, as

shown in Table 3. Among the above three algorithms, the

algorithm with the best performance was selected to optimize

the 11 optimization groups.

2.5 Simulation

In the optimization simulation, all algorithms maintained

the same maximum run sizes. For NSGA-II and NCGA, the

TABLE 1 Range of different initial collision parameters and the initial value setting of the optimization model.

Optimization parameters Minimum Maximum Initial values

V/(m/s) 16.00 20.00 18

D/m 0.14 0.54 0.34

α/rad 0.30 0.70 0.5

β/rad −0.20 0.20 0

γ/rad −0.20 0.20 0

TABLE 2 Setting of four pairs of collision marker points and objective function.

Group I II III IV

Collision
markers

A: the center of the spiderweb fracture
pattern of the windshield. B: the right
shoulder of the pedestrian

C: the bumper area near the left
headlight. D: the square mark on the
middle of the right thigh

E: the lower left front of the
bumper. F: the outer middle
of the right calf

G: where the human head hits the ground
after a collision. H: the position of contact
with the ground in the video

subobjectives d (AB) d (CD) d (EF) d (GH)

Objective
function

d (objective) = d (AB)+d (CD)+d (EF)+d (GH)
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size of the population was 20, and the number of generations

was 20. For MOPSO, the maximum number of iterations was

20, and the number of particles was 20. In total,

400 simulations of each group were performed in

workstations (Intel Xeon E5-2690 central processing unit

(CPU) with 8 cores and 64GRAM). Notably, the setting of

simulation times was based on empirical experiments.

Theoretically, the larger the number of simulations is the

larger the number of iterations and comparisons to obtain the

optimal solution. The above three algorithms were executed

using Isight 2017 software (DS SIMULIA). The computation

time lasted approximately 100 h for each group. In the

MADYMO simulation, we used the modified Euler method

of MADYMO with a time step of 2.0–5 s × 10–5 s. The CPU

duration for each analysis was set to 1.5 s. The real time

needed for each simulation was approximately 15 min. The

fracturing leg model option was selected.

2.6 Validation

The purpose of this study was to establish a method for

accurately reconstructing the accident process while comparing

the effects of multiple algorithms and different collision

parameters on the optimization results. To further investigate

the applicability of this method, it was necessary to validate the

results. To verify the correctness of the method in this study, two

other vehicle-pedestrian accident cases were randomly selected

for reconstruction to achieve verification. In these two cases, due

to the rescue and road clearance after the accidents, we could not

obtain sufficiently accurate locations of pedestrian landing points

based on the accident data. Therefore, the marker points in both

cases were set at the contact position of the pedestrian’s head with

the windshield and the contact position of the pedestrian’s femur

with the front cover of the vehicle bonnet. Three different

optimization algorithms were employed, and the optimization

results were compared with the research findings and with the

accident consequences to verify the accuracy of the

reconstruction.

3 Results

3.1 Multi-rigid-body simulation results

The reconstruction of the multi-rigid-body model provided

dynamic visualization of contact between the pedestrian, vehicle

and ground during the reconfigured accident and a comparison

with the actual accident situation for vehicle deformations and

human injuries. Using different optimization models and

optimization methods, an optimal solution was obtained and

reimported into MADYMO software for calculations to obtain

the accident process that best described the actual accident.

Figure 6 shows the relative positions of the vehicle and

pedestrian in real life and the reconstructed accident. After

the pedestrian was struck by the vehicle, the victim rotated in

the direction opposite to the vehicle’s progress until the

pedestrian’s right shoulder collided with the windshield of the

vehicle. Next, the pedestrian continued to flip in the air and was

thrown onto the vehicle on the left side of the road. In the

reconstruction results, the position of contact between the

pedestrian’s right shoulder and the shattered windshield of the

vehicle, the position of impact between the pedestrian’s injured

right leg and the vehicle’s bumper, and the position of impact

between the pedestrian’s head and the ground matched the video

data for the real accident, proving that the reconstruction was

accurate. The simulation results showed that the value of HIC

was 1882.9, predicting a 96% probability of AIS3 head injury

according to relevant studies (Li and Zhu, 2009; Gao et al., 2020;

Wang et al., 2021b; Wang et al., 2022a), which was consistent

with the death of pedestrians due to severe craniocerebral injury

in this accident. Relevant studies (Hu et al., 2020) showed that the

range of forces leading to femur fracture was 3 kN–10 kN. In the

present simulation, the maximum force on the lower femur was

10.093 kN (11.8 m), which was consistent with the pedestrian’s

right lower thigh fracture caused by the vehicle bumper.

Therefore, the predicted injury condition of the human body

model was consistent with the actual accident. In these two

validation cases, the validity of the reconstructions was evaluated

by comparing the simulated pedestrian kinematics and the

TABLE 3 Optimization groups based on the number of collision marker pairs and the type of collision contact. There are 11 groups based on the
number of subobjectives and the contact during the collision.

The number of subobjectives Vehicle-pedestrian contact Vehicle-pedestrian-ground contact

2 I and II I and IV

I and III II and IV

II and III III and IV

3 I, II and III I, II and IV

I, III and IV

II, III and IV

4 — I, II, III and IV
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pedestrian injuries with the information obtained from accident

investigations. The results suggest that these two accidents were

well reconstructed.

3.2 Optimization results of different
algorithms

All operations for each algorithm and each optimization

group were automatically executed 400 times. The global

optimum results for the different algorithms are shown in

Table 4. The value of the objective function was the sum of

the values of the different subobjectives, that is, the sum of the

distances between pairs of corresponding collision marker

points; therefore, the larger the value was, the worse the

result. NSGA-II had the smallest objective function with a

value of 0.1921, followed by NCGA with a value of

0.2064 and MOPSO with a relatively large objective function

with a value of 0.2898. In the validation cases, similar results were

obtained, as listed in the Appendix.

The simulation histories of different algorithms are shown in

Figure 7. The four subobjective functions significantly converged

for NSGA-II, the first two subobjective functions (but not the last

two) converged for NCGA, and none of the four subobjective

functions converged for the MOPSO. The global optimal

solutions for the three algorithms (NSGA-II, NCGA, MOPSO)

occurred at the 315th iteration, 269th iteration and 367th

iteration, respectively. Fewer inferior solutions (35) and more

local optimal solutions (99) were obtained for NSGA-II

compared to the NCGA (70 and 55, respectively) and

compared to MOPSO(224 and 31, respectively). All the

noninferior solutions were concentrated in the range from

0 m to 2 m, and all of the inferior solutions were greater than

2 m. The convergence of the optimization results for the

FIGURE 6
Comparison of kinematic response between simulation and accident (informed consent was obtained from the families of the deceased for the
relevant content in this figure).

TABLE 4 List of the global optimal solution parameters of the group of “I, II, III and IV” optimized by different multiobjective optimization algorithms.

Different
algorithms
(I, II, III,
and IV)

V
(m/s)

D
(m)

α
(rad)

β
(rad)

γ
(rad)

d
(AB)
(m)

d
(CD)
(m)

d
(EF)
(m)

d
(GH)
(m)

d
(objective)
(m)

NSGA-II 17.3485 0.3186 0.6650 0.0298 −0.1895 0.1047 0.0493 0.0142 0.0239 0.1921

NCGA 16.5232 0.2889 0.6683 −0.1689 0.1185 0.1235 0.0396 0.0161 0.0271 0.2064

MOPSO 16.0000 0.2662 0.3565 −0.0547 0.0008 0.0612 0.0387 0.0111 0.1788 0.2898
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FIGURE 7
Simulation histories of different algorithms. The three columns from left to right are NSGA-II, NCGA, and MOPSO. The five rows from top to
bottom are d (AB), d (CD), d (EF), d (GH), and d (objective). The x-axis of each Pareto graph indicates the number of runs, and the y-axis indicates the
value of each sub objective function and the objective function.
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validation cases showed similar results. In the two validation

cases, it is also evident that the performed simulations have the

same tendency.

One-way ANOVA was conducted to evaluate the

distribution differences among the results of the data of the

three different algorithms for the same group. As shown in

Figure 8, with the same optimization parameters, the three

algorithms had significantly different effects on the

optimization of accident reconstruction. After removing

outliers, the optimal results of different algorithms were

significantly different (F = 93.65 and p < 0.001). The mean

values of the objective function were 1.16 m, 1.87 m, and 3.33 m,

FIGURE 8
Objective function distribution of different multiobjective optimization algorithms. Data were analysed by one-way ANOVA, and the results
were considered statistically significant when p < 0.05. The red dots indicate the average value of the objective function for each algorithm after
removing the outliers.

TABLE 5 List of the global optimal solution parameters of 11 optimization groups based on the number of collisionmarker pairs and collision contact
types by NSGA-II.

Optimization
groups
(NSGA-II)

Groups V
(m/s)

D
(m)

α
(rad)

β
(rad)

γ
(rad)

d
(AB)
(m)

d
(CD)
(m)

d
(EF)
(m)

d
(GH)
(m)

d
(objective)
(m)

1 I and II 17.8211 0.2675 0.3741 −0.1441 0.1857 0.0033 0.0352 0.0098 1.7001 1.7484

2 I and III 17.2523 0.2760 0.3729 −0.1156 −0.1847 0.0098 0.0388 0.0031 1.0117 1.0634

3 II and III 17.0202 0.2772 0.3323 −0.0507 0.1261 0.0497 0.0369 0.0024 1.7032 1.7922

4 I, II
and III

17.1558 0.2829 0.4149 −0.0284 −0.0753 0.0028 0.0400 0.0031 1.6958 1.7417

5 I and IV 16.0181 0.2527 0.4412 −0.1870 0.0760 0.0267 0.0500 0.0209 0.0839 0.1816

6 II and IV 16.9292 0.3662 0.4219 0.0042 0.0250 0.2017 0.1020 0.0654 0.0151 0.3843

7 III and IV 16.3664 0.3451 0.3633 0.0620 0.0736 0.1898 0.0834 0.0528 0.0148 0.3407

8 I, II
and IV

16.5461 0.3061 0.6233 0.1572 0.1298 0.0564 0.0414 0.0049 0.0327 0.1354

9 I, III,
and IV

16.4189 0.3063 0.4999 −0.0253 0.0854 0.0920 0.0439 0.0119 0.0937 0.2415

10 II, III,
and IV

16.1749 0.2746 0.4315 −0.1880 0.0643 0.0694 0.0393 0.0115 0.1278 0.2479

11 I, II, III,
and IV

17.3485 0.3186 0.6650 0.0298 −0.1895 0.1047 0.0493 0.0142 0.0239 0.1921
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and the median values were 0.830 m, 1.196 m, and 2.438 m for

NSGA-II, NCGA, and MOPSO, respectively. The distribution of

optimization results was more concentrated for NSGA-II than

for NCGA, and the distribution was more discrete after

optimization by MOPSO.

3.3 Optimization results of different
preimpact parameters

As shown in Table 5, the optimal results for the different

optimization groups showed that the achievable distance after

optimization between model positions and observed positions

was greater than 1 m, i.e., 1.7484 m, 1.0634 m, 1.7922 m, and

1.7417 m, when only vehicle-pedestrian contact was considered.

However, all of the achieved distances after optimization between

the model positions and the observed positions were less than

0.5 m, i.e., 0.1816 m, 0.3843 m, 0.3407 m, 0.1354 m, 0.2415 m,

0.2479 m, and 0.1921 m, when pedestrian-ground contact was

simultaneously considered. When only the contact between the

pedestrian and the vehicle was considered, the achieved distance

after optimization between model positions and observed

positions was significantly higher compared with the distance

obtained when both the vehicle-pedestrian contact and

pedestrian-ground contact were considered. This finding

indicates that in addition to vehicle-pedestrian collision

contact, the reconstruction combined with the information

about the pedestrian landing point can effectively reduce the

achievable distance after optimization between model positions

and observed positions. When only the pedestrian-vehicle

contact was considered or when the vehicle-pedestrian-ground

contact was simultaneously considered, the distance was always

at the same level for the same number of collision marker point

pairs. This distance did not significantly decrease with the

increase in the number of marker point pairs, but the

minimum value appeared in group 8. In all simulations, the

distance between the shoulder marker and the windscreen

marker and that between the head marker and the ground

considerably fluctuated, while the two groups of distances

associated with the markers of the legs fluctuated less.

4 Discussion

4.1 Credibility and efficiency of the
optimization method

The reconstruction of traffic accidents has always been

essential for authorities to make impartial and informed

decisions. Typically, a reconstruction of the dynamics may be

requested in the event of traffic accidents, which helps authorities

determine the responsible party in an accident. In recent times,

bioengineering techniques have become increasingly involved in

forensic disputes (Durante, 2019; Li et al., 2021b; Chen, 2021).

The application of MB dynamics simulations for collision

reconstruction may have significant advantages over

traditional expert approaches in some cases. Expert

assessment of the compatibility of the injuries, vehicle

deformation and accident scenario is largely dependent on the

theoretical and practical knowledge, while the use of simulation

software allows this human factor to be minimized when an

automatic optimization is involved. The simulation can provide

more information, including information about the complete

accident process, impact forces and preimpact conditions. The

reconstruction results could be output as an animation, which

can be useful for visualizing and describing the traffic accident

scenario in a courtroom.

However, the uncertainty of reconstruction results is still an

important issue. There are two general viewpoints on numerical

simulation in traffic accident accidents. The first viewpoint is

using uncertainty analysis methods to build an approximate

model based on several simulation samples, such as the

response surface model (RSM) method (Ming et al., 2014).

This method is usually employed in conjunction with random

sampling, such as Monte Carlo sampling and Latin hypercube

sampling (Wang et al., 2022b). Zou et al. (2015) adopted PC-

Crash to analyse the speed of an accident and to ascertain

whether the driver was speeding based on extreme value

theory and convex model theory. In addition, an improved

probability-interval method was proposed for using

probabilistic methods and interval trajectories to analyse the

uncertainty of the reconstructed results of traffic accidents (Zou

et al., 2017). The authors also proposed two improved

experimental design methods, the first method is based on

orthogonal design (OD) and is referred to as orthogonal

design (OBD); and the second method is based on uniform

design (UD) and is referred to as multiple response surface

uniform design (MUD), which yields more accurate

reconstruction results (Zou et al., 2018). This is an effective

way to improve the reliability of an accident reconstruction

result, especially in regard to predicting the range of collision

speeds. However, not all variables and simulation results can be

estimated from an approximate model. A best fit result is more

appropriate when describing the location of the collision, posture

of the victim, degree of injury, and dynamics of the whole

accident process. To achieve the best-fitting results, analysts

often adjust initial variables according to experience and

intuition. Many simulations were needed when the results

were unsatisfactory (Peng et al., 2013; Nie and Yang, 2014).

Overall, the proposed optimization methods adopted the relative

distances between pairs of contact points as optimization targets.

The corresponding ranges of the initial variables were

determined by existing accident data. For instance, we can

estimate the range of vehicle collision speeds by surveillance

video analysis. The value of a variable changes automatically in

the optimization process. The injury outcomes and kinematics
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response can be validated by actual injuries and the existing

traces. Therefore, the reconstruction result in our operational

framework was the global optimal solution within a reasonable

range of initial variables.

Another question is the accuracy of the models and accident

data. The vehicle model is often constructed of ellipsoidal bodies

of various sizes, thereby creating a certain gap between the model

and the actual vehicles (Okamoto et al., 2003; Zou et al., 2019). By

reconstructing the vehicle with 3D laser scans in this study, a

multi-rigid-body model of the vehicle that was more accurate

than the previous ellipsoid model was obtained. The height and

weight of the mannequin were adjusted to match those of the

accident victim. Reconstruction of the road at the scene by UAV

photogrammetry also provided a more complete view of the

accident road information and more accurate measurement.

After optimization by NSGA-II, there was good consistency

for the kinematic response of the pedestrian between the

simulation and surveillance videos, and the injury analysis was

consistent with the medical reports. The proposed approach is

valid for highly improving reconstruction efficiency without

simultaneously compromising accuracy, which provides more

convincing evidence for forensic examinations and legal cases.

4.2 Effect of different optimization
algorithms on optimization results

The purpose of this study was to achieve multiobjective

optimization and to improve the accuracy and efficiency of

accident reconstruction. The nature of optimization was to

obtain a set of parameters that minimize the achievable

distance between model positions and observed positions, so it

is necessary to select an appropriate multiobjective algorithm.

Multiobjective optimization could obtain a set of solutions where

the decomposition of the assessment function into different

objectives leaves room for more flexible solutions that cannot

be reached with the single objective approach (Coello et al.,

2007). Three widely employed multiobjective optimization

algorithms were evaluated, among which NSGA-II has the

best performance. The value of the global optimal solution for

NSGA-II was the smallest, followed by NCGA and MOPSO. The

objective function was the sum of the subobjective functions, and

the closer the sum of the subobjective functions was to 0, the

higher the accuracy of accident reconstruction and the better the

collision results matched the actual accident. On the other hand,

NSGA-II was optimized to yield the fewest inferior solutions and

the most local optimal solutions, and therefore, was able to

produce more alternative design solutions than the other two

algorithms (Figure 7). Additionally, NSGA-II showed a better

convergence in each subobjective function, and the local optimal

solutions continued to increase and tended to be concentrated

with the number of runs. The NSGA-II completed convergence

within 100 generations (Untaroiu et al., 2009). In the two

validation cases, it is also evident that the performed

simulations have the same tendency. The powerful

performance of NSGA-II was also confirmed by the study of

Wang et al. (2020).

Figure 8 shows that after optimization of NSGA-II, the

distribution of results was concentrated in a small region of

values with relatively few discrete values, followed by NCGA, and

that MOPSO had a larger distribution range, a large region of

values in a large numerical area and more discrete values.

Although the one-way ANOVA results showed significant

differences between NSGA-II and NCGA, they had a similar

performance in the convergence and the value of the global

optimal solution. One reason may be that NSGA-II and NCGA

are widely utilized genetic algorithms (GAs) that mimic heredity

and evolution, which can effectively handle multiobjective and

nonlinear problems with good exploratory properties. NSGA-II

with an elitist strategy uses stochastic search methods based on

the imitation of natural biological evolution. Its search

mechanisms mainly included the preservation scheme of

excellent solutions identified in the search, the assignment

scheme of appropriate fitness values and a parameter-free

sharing scheme. NCGA also includes neighbourhood

crossover, but unlike the results of random selection, it can

select individuals who were closer to each other in the

crossover operation. Therefore, once there is a discrete value,

there will also be a discrete value between adjacent generations.

This finding may explain why NCGA converges faster but has

more inferior solutions in the optimization process than NSGA-

II. Both of algorithms try to achieve precise exploitation, and

similar results have indicated that NSGA-II and NCGA had

better performance for airbag design and optimization (Park,

2017). However, although MOPSO is similar to GA and can

produce a population per generation, it does not have

evolutionary processes such as selection, crossover and

mutation (Shi, 1998). Therefore, MOPSO did not exhibit

convergence and had the largest number of inferior solutions.

4.3 Effect of different preimpact
parameters on the optimization results

The multiobjective optimization algorithm can randomly

value each design variable, and the generated test points can

consider the influence of each variable on the collision results,

thus ensuring the randomness and independence of the sample.

To control for variables, we employed the same algorithm, size of

the population and number of generations. Figure 9 shows the

distribution of the 11 groups of optimization results after the

NSGA-II analysis. Depending on the number of collision contact

markers and subobjectives, the number of Pareto noninferior

solutions and local solutions obtained after the optimization of

each group varied, as did the location where the optimal solution

appeared during the calculation. When only vehicle-pedestrian
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contact was considered, there were almost no inferior solutions.

There was a certain number of inferior solutions when vehicle-

pedestrian-ground contact was considered, which may be

attributed to the greater uncertainty of the human body’s

throw to the air in the landing stage after contact with the

vehicle. In addition, the number of subobjectives involved in

the optimization process varied, resulting in a different number

of local optimal solutions. In general, as the number of

subobjectives involved in the optimization process increased,

the number of available alternatives increased. In addition, there

was no obvious relationship between the position of the optimal

solution and the number of subobjectives and collision contacts,

FIGURE 9
Distribution of the number of different quality solutions in the 11 optimization groups.

FIGURE 10
Achieved distances after optimization between model positions and observed positions of the global optimal solutions for the 11 optimization
groups.
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but most of the optimal solutions were observed after

200 simulations. Therefore, the setting of simulation times

needs to be taken seriously in future optimization designs.

To be more persuasive, Figure 10 shows the distribution of

the achieved distance after optimization between model positions

and observed positions for the 11 optimization groups. The

achieved distances after optimization between model positions

and observed positions were generally larger when vehicle-

pedestrian contact was considered than when vehicle-

pedestrian-ground contact was considered. This finding shows

that during the progress of traffic accident reconstruction and

optimization, considering only vehicle-pedestrian collisions

without considering collisions between the pedestrian and the

ground led to inaccurate reconstruction results. Notably, the

distance between the pedestrian’s right shoulder joint marker and

the vehicle’s windshield marker fluctuated to some extent and

was usually larger than the situation when only vehicle-

pedestrian contact was considered. The distances between the

other two collision marker pairs (pedestrian lower limb markers

with the bumper marker and vehicle bonnet marker) were

usually smaller, as these markers indicated the initial contact

between the vehicle and the pedestrian. One plausible

explanation is that leg injuries are often caused in the initial

stages of an accident and therefore fluctuate less. For the results, it

was clear that at least one pair of markers in each of the three

postaccident phases (collision between vehicle and pedestrian,

human body flipping in the air, and human body hitting the

ground) was required for the accident reconstruction and

optimization results and improved the accuracy of the

accident reconstruction.

4.4 Representativeness of application
cases and generalization of optimization
methods

The proposed optimization methods adopted the relative

distances between pairs of contact points as optimization targets

based on the injuries, vehicle deformations and traces of the

incident scenario. Injuries typical of vehicle-pedestrian crashes

when the pedestrian is in a vertical position include contusions,

abrasions, lacerations and fractures of the tibia, fibula and hip or

pelvis, which are usually caused by the bumper or bonnet front of

a vehicle; traumatic head injuries, including scalp lacerations and

skull fractures occurring as a result of a contact with a windscreen

and its surrounding frame; and injuries contacting the ground

caused by pedestrians falling to the ground (Nogayeva et al.,

2021). Craniocerebral injuries and lower limb injuries are the

most common types of injuries sustained in pedestrian-vehicle

accidents (Airaksinen et al., 2020). These injuries are often

influenced by the speed of the vehicle during the collision, the

angle of the impact with the pedestrian and the relative lateral

positions of the pedestrian and vehicle. The angle of the head at

the time of collision also affects the location and shape of a brain

injury. Therefore, we applied the corresponding five parameters

as optimization variables in the present case. These injuries also

reflect the three stages of the process of a pedestrian being hit by a

vehicle (Monfort and Mueller, 2020; Nogayeva et al., 2021). We

often correspondingly observe relative vehicle deformation and

contact traces. Hair, bloodstain, and clothing fibres also indicated

the location of the contact point between the human body and

the vehicle or ground. In the typical case presented in this paper,

we created four pairs of collision markers based on the contact

positions of bumper, bonnet front, windscreen and ground,

which represented the common situation in vehicle-pedestrian

traffic accidents. However, sometimes we cannot determine the

locations of all contact points, especially where they make contact

with the ground, as in the validation case. Another notable issue

is that when vehicle-pedestrian contact was only considered,

there will be some bias in the optimization results of falling

dynamics and the contact position with ground. This issue is

critical when the boundary conditions of the MB simulation are

utilized in the finite element simulation to determine the degree

of landing injury (Wang et al., 2022a). Other accidents, such as

two-wheeler accidents, should be reconstructed to further

validate the proposed method.

5 Limitations and future work

Several limitations must be noted. First, the current study

considered only vehicle-pedestrian collisions and did not cover

more complex traffic accident scenarios, such as cycling or

pushing a bicycle. More impact scenarios need to be included

for a more comprehensive investigation. Second, the stiffness of

the multi-rigid-body model of the vehicle was set by the stiffness

curve of the front parts of similar vehicles, and there is a certain

deviation from the stiffness of the real accident vehicle. It will be

interesting to include vehicle stiffness as a variable in the

optimization in further research. In addition, the friction

coefficients were adjusted according to the literature. This

study did not consider the friction coefficient as the initial

variable of optimization as the objective function determines

it. In the present case, the objective function is the Euclidean

distances between the known human, vehicle and ground contact

points at the time of initial impact. Thus, only the friction

coefficient between the car and the pedestrian has an impact

on the objective function. However, it is necessary to analyse the

effects of other variables in the future. When the objective

function is the final located position of a vehicle or

pedestrian, the friction coefficients will have an important

influence, which leads us to another research topic: how we

analyse the effects of different initial variables and different

objective functions. Another issue is whether known injuries

can serve as an objective function for optimization. The difficulty

was how to quantify the specific value corresponding to the real
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injury in optimization. Third, this study used only a few cases for

a preliminary investigation, and additional cases will be needed

for more accurate and applicable studies in the future. In this

study, the role of the available accident video information in the

reconstruction is obvious. Much information such as vehicle

collision speed, the range of pedestrian posture and the

evaluation of the kinematic process of the reconstructed

accident, is obtained from the video information, by which we

obtain a more accurate range of initial variables. Notably, cases

without available video will be more challenging but also more

important, as reconstruction can help establish what actually

happened. We need to obtain more accident information to limit

the range of optimization initial variables. On the other hand, we

need enough deterministic evidence to verify the reconstruction

results. In the future, researchers could use limited accident

information, such as the correspondence between injuries and

traces, the degree of injuries, the angle and distance of initial

position and rest position for accident participants, etc., which

could be considered objective functions to qualify the final

accident reconstruction. In this way, the current methods and

multiobjective algorithms could be further tested in traffic

accident reconstruction. Of course, under certain conditions, it

would be more convincing to use the video information as a test

of the final reconstruction results optimized by independent

analysts. The basic methodology has now been established,

and a wide range of questions need to be addressed in further

work. The combined application of MB dynamic and finite

element methods would enhance the credibility when

simulation results were employed as forensic evidence. The

MB dynamic method with an optimization algorithm is used

first to extract the initial conditions of the body at the impact with

the vehicle, and then the finite element method is used to

simulate the injury mechanism.

6 Conclusion

In this study, an intelligent approach for the accurate

reconstruction of vehicle-pedestrian accidents based on MB

dynamic simulation with a multiobjective optimization algorithm

was established. 3D laser scanning technology was used to reconstruct

a vehicle involved in a traffic accident, and the accident scene was

reconstructed using an UAV, combining the pedestrian posture and

weather conditions in the video information. Different multiobjective

optimization algorithms, such as NSGA-II, NCGA, and MOPSO,

influenced the accuracy of the accident reconstruction process.

NSGA-II showed better performance and provided a smaller value

of the objective function, more alternative solutions and better

convergence, than the other two algorithms. The selection and

contact of collision marker points during the collision process also

had an impact on the accuracy of the accident reconstruction. The

larger the number of collisionmarker points is, the greater the number

of alternative solutions that can be obtained. More accurate

reconstructions can be obtained when at least one pair of collision

markers is set in each of the three phases after a vehicle-pedestrian

collision, i.e., when the pedestrian is struck by the vehicle, flips in the

air, and falls to the ground. In this paper, three multiobjective

optimization methods were used to reconstruct a traffic accident

and to more realistically and accurately reproduce the kinematic

correspondence between pedestrians and vehicles in road traffic

accidents, complementing and refining accident reconstruction

optimization methods. The proposed approach showed good

potential for improving the identification procedure of vehicle

preimpact conditions and the accuracy of accident reconstruction,

which can provide supporting evidence for the forensic identification

of traffic accidents.
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