8,947 research outputs found

    Non-Relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity

    Full text link
    Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we could see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in earth's gravitational field may form a gravitationally bound quantized state, which had already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are discussed in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.Comment: 12 pages, no figur

    Thermodynamics with density and temperature dependent particle masses and properties of bulk strange quark matter and strangelets

    Full text link
    Thermodynamic formulas for investigating systems with density and/or temperature dependent particle masses are generally derived from the fundamental derivation equality of thermodynamics. Various problems in the previous treatments are discussed and modified. Properties of strange quark matter in bulk and strangelets at both zero and finite temperature are then calculated based on the new thermodynamic formulas with a new quark mass scaling, which indicates that low mass strangelets near beta equilibrium are multi-quark states with an anti-strange quark, such as the pentaquark (u^2d^2\bar{s}) for baryon nmber 1 and the octaquark (u^4d^3\bar{s}) for dibaryon etc.Comment: 14 pages, 12 figures, Revtex4 styl

    ^{59}Co NMR evidence for charge ordering below T_{CO}\sim 51 K in Na_{0.5}CoO_2

    Full text link
    The CoO2_{2} layers in sodium-cobaltates Nax_{x}CoO2_{2} may be viewed as a spin S=1/2S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high TcT_{c} cuprates. We will present unequivocal 59^{59}Co NMR evidence that below TCO∼51KT_{CO}\sim51 K, the insulating ground state of the itinerant antiferromagnet Na0.5_{0.5}CoO2_{2} (TN∼86KT_{N}\sim 86 K) is induced by charge ordering.Comment: Phys. Rev. Lett. 100 (2008), in press. 4 figure

    Incommensurate Phase of a Triangular Frustrated Heisenberg Model Studied via Schwinger-Boson Mean-Field Theory

    Full text link
    We study a triangular frustrated antiferromagnetic Heisenberg model with nearest-neighbor interaction J1J_{1} and third-nearest-neighbor interactions J3J_{3} by means of Schwinger-boson mean-field theory. It is shown that an incommensurate phase exists in a finite region in the parameter space for an antiferromagnetic J3J_{3} while J1J_{1} can be either positive or negtaive. A detailed solution is presented to disclose the main features of this incommensurate phase. A gapless dispersion of quasiparticles leads to the intrinsic T2T^{2}-law of specific heat. The local magnetization is significantly reduced by quantum fluctuations (for S=1 case, a local magnetization is estimated as m=≈0.6223m= \approx0.6223). The magnetic susceptibility is linear in temperature at low temperatures. We address possible relevance of these results to the low-temperature properties of NiGa2_{2}S4_{4}. From a careful analysis of the incommensurate spin wave vector, the interaction parameters for NiGa2_{2}% S4_{4} are estimated as, J1≈−3.8755J_{1}\approx-3.8755K and J3≈14.0628J_{3}\approx14.0628K, in order to account for the experimental data.Comment: 9pages, 3figure
    • …
    corecore