12,453 research outputs found

    Superconductivity Near a Quantum Critical Point in Ba(Fe,Co)2As2

    Full text link
    We will examine the possible link between spin fluctuations and the superconducting mechanism in the iron-based high temperature superconductor Ba(Fe,Co)2As2 based on NMR and high pressure transport measurements.Comment: Invited paper to m2s-IX (2009

    Systematics of fusion probability in "hot" fusion reactions

    Full text link
    The fusion probability in "hot" fusion reactions leading to the synthesis of super-heavy nuclei is investigated systematically. The quasi-fission barrier influences the formation of the super-heavy nucleus around the "island of stability" in addition to the shell correction. Based on the quasi-fission barrier height obtained with the Skyrme energy-density functional, we propose an analytical expression for the description of the fusion probability, with which the measured evaporation residual cross sections can be reproduced acceptably well. Simultaneously, some special fusion reactions for synthesizing new elements 119 and 120 are studied. The predicted evaporation residual cross sections for 50Ti+249Bk are about 10-150fb at energies around the entrance-channel Coulomb barrier. For the fusion reactions synthesizing element 120 with projectiles 54Cr and 58Fe, the cross sections fall to a few femtobarns which seems beyond the limit of the available facilities.Comment: 5 figures, 1 tabl

    Extremal Isolated Horizon/CFT Correspondence

    Full text link
    The near-horizon limit of the extremal (weakly) isolated horizon is obtained under the Bondi-like coordinates. For the vacuum case, explicit coordinate transformation relating the near-horizon metric under the Bondi-like coordinates and the standard Poincar\'e-type or global near-horizon metric of the extremal Kerr black hole is found, which shows that the two geometries are the same. Combined with the known thermodynamics of the (weakly) isolated horizon, it is argued that the Kerr/CFT correspondence can be generalized to the case of a large class of non-stationary extremal black holes.Comment: 13 pages, no figure, revtex4; v2: abstract revised, minor corrections, references added; v3: minor corrections, version to appear in PR

    Adjusted Empirical Likelihood for Long-memory Time Series Models

    Full text link
    Empirical likelihood method has been applied to short-memory time series models by Monti (1997) through the Whittle's estimation method. Yau (2012) extended this idea to long-memory time series models. Asymptotic distributions of the empirical likelihood ratio statistic for short and long-memory time series have been derived to construct confidence regions for the corresponding model parameters. However, computing profile empirical likelihood function involving constrained maximization does not always have a solution which leads to several drawbacks. In this paper, we propose an adjusted empirical likelihood procedure to modify the one proposed by Yau (2012) for autoregressive fractionally integrated moving average (ARFIMA) model. It guarantees the existence of a solution to the required maximization problem as well as maintains same asymptotic properties obtained by Yau (2012). Simulations have been carried out to illustrate that the adjusted empirical likelihood method for different long-time series models provides better confidence regions and coverage probabilities than the unadjusted ones, especially for small sample sizes

    Inverted spin polarization of Heusler alloys for new spintronic devices

    Full text link
    A new magnetic logic overcomes the major limitations of field programmable gate arrays while having a 50% smaller unit cell than conventional designs utilizing magnetic tunnel junctions with one Heusler alloy electrode. These show positive and negative TMR values at different bias voltages at room temperature which generally adds an additional degree of freedom to all spintronic devices

    Explanation of the RHIC HBT Puzzle by a Granular Source of Quark-Gluon Plasma Droplets

    Get PDF
    We present a review on the explanation of the RHIC HBT puzzle by a granular pion-emitting source of quark-gluon plasma droplets. The evolution of the droplet is described by relativistic hydrodynamics with an equation of state suggested by lattice gauge results. The granular source evolution is obtained by superposing all of the evolutions of individual droplets. Pions are assumed to be emitted thermally from the droplets at the freeze-out configuration characterized by a freeze-out temperature TfT_f. We find that the average particle emission time scales with the initial radius of the droplet. Pions will be emitted earlier if the droplet radius is smaller. An earlier emission time will lead to a smaller extracted HBT radius RoutR_{\rm out}, while the extracted HBT radius RsideR_{\rm side} is determined by the scale of the distribution of the droplet centers. However, a collective expansion of the droplets can further decrease RoutR_{\rm out}. As a result, the value of Rout/RsideR_{\rm out}/R_{\rm side} can be close to, or even less than 1 for theComment: 8 pages, 4 figures, invited talk presented at the XI International Workshop on Correlation and Fluctuation in Multiparticle Production, Nov. 21-24, 2006, Hangzhou, Chin

    Non-damping oscillations at flaring loops

    Full text link
    Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O I" window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&
    corecore