248 research outputs found

    ERISA Plan Changes

    Get PDF

    Nonlocal reflection by photonic barriers

    Full text link
    The time behaviour of microwaves undergoing partial reflection by photonic barriers was measured in the time and in the frequency domain. It was observed that unlike the duration of partial reflection by dielectric layers, the measured reflection duration of barriers is independent of their length. The experimental results point to a nonlocal behaviour of evanescent modes at least over a distance of some ten wavelengths. Evanescent modes correspond to photonic tunnelling in quantum mechanics.Comment: 8 pages, 5 figure

    Tunneling Violates Special Relativity

    Full text link
    Experiments with evanescent modes and tunneling particles have shown that i) their signal velocity may be faster than light, ii) they are described by virtual particles, iii) they are nonlocal and act at a distance, iv) experimental tunneling data of phonons, photons, and electrons display a universal scattering time at the tunneling barrier front, and v) the properties of evanescent, i.e. tunneling modes is not compatible with the special theory of relativity

    Lorentz Invariant Superluminal Tunneling

    Get PDF
    It is shown that superluminal optical signalling is possible without violating Lorentz invariance and causality via tunneling through photonic band gaps in inhomogeneous dielectrics of a special kind.Comment: 10 pages revtex, no figure, more discussions added, submitted to Phys. Rev.

    Theoretical evidence for the superluminality of evanescent modes

    Full text link
    Though both theoretical and experimental investigations have revealed the superluminal behavior of evanescent electromagnetic waves, there are many disputes about the physical meaning and validity of such superluminal phenomenon, which is due to the fact that the traditional investigations are based on the theory of tunneling time, and concerned with the problem of what the group velocity of evanescent waves means. In this paper, by studying the quantum probability amplitude for photons to propagate over a spacelike interval along an undersized waveguide, we present theoretical evidence for such superluminality

    Measurement of Superluminal optical tunneling times in double-barrier photonic bandgaps

    Get PDF
    Tunneling of optical pulses at 1.5 micron wavelength through double-barrier periodic fiber Bragg gratings is experimentally investigated. Tunneling time measurements as a function of barrier distance show that, far from the resonances of the structure, the transit time is paradoxically short, implying Superluminal propagation, and almost independent of the distance between the barriers. These results are in agreement with theoretical predictions based on phase time analysis and also provide an experimental evidence, in the optical context, of the analogous phenomenon expected in Quantum Mechanics for non-resonant superluminal tunneling of particles across two successive potential barriers. [Attention is called, in particular, to our last Figure]. PACS nos.: 42.50.Wm, 03.65.Xp, 42.70.Qs, 03.50.De, 03.65.-w, 73.40.GkComment: LaTeX file (8 pages), plus 5 figure

    Recovering the stationary phase condition for accurately obtaining scattering and tunneling times

    Full text link
    The stationary phase method is often employed for computing tunneling {\em phase} times of analytically-continuous {\em gaussian} or infinite-bandwidth step pulses which collide with a potential barrier. The indiscriminate utilization of this method without considering the barrier boundary effects leads to some misconceptions in the interpretation of the phase times. After reexamining the above barrier diffusion problem where we notice the wave packet collision necessarily leads to the possibility of multiple reflected and transmitted wave packets, we study the phase times for tunneling/reflecting particles in a framework where an idea of multiple wave packet decomposition is recovered. To partially overcome the analytical incongruities which rise up when tunneling phase time expressions are obtained, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and a one dimensional squared potential barrier where the scattered wave packets can be recomposed by summing the amplitudes of simultaneously reflected and transmitted waves.Comment: 32 pages, 5 figures, 1 tabl

    Limitations on the principle of stationary phase when it is applied to tunneling analysis

    Get PDF
    Using a recently developed procedure - multiple wave packet decomposition - here we study the phase time formulation for tunneling/reflecting particles colliding with a potential barrier. To partially overcome the analytical difficulties which frequently arise when the stationary phase method is employed for deriving phase (tunneling) time expressions, we present a theoretical exercise involving a symmetrical collision between two identical wave packets and an one-dimensional rectangular potential barrier. Summing the amplitudes of the reflected and transmitted waves - using a method we call multiple peak decomposition - is shown to allow reconstruction of the scattered wave packets in a way which allows the stationary phase principle to be recovered.Comment: 17 pages, 2 figure

    Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation

    Full text link
    We describe here the characteristics of two types of high-quality PbTe p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas (TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of these PbTe diodes. Capacitance-voltage and current-voltage characteristics have been measured. The measurements were carried out over a temperature range from ~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode still demonstrated rectifying properties. This maximum operating temperature is higher than any of the earlier reported results. The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at 80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both ion-implanted junctions. At 80 K the reverse current started to increase markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V plots shows that the junctions in both diode types are linearly graded. The analysis of the C-V plots allows also determining the height of the junction barrier, the concentrations and the concentration gradient of the impurities, and the temperature dependence of the static dielectric constant. The zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ, 250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38 OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~ 10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation, while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by the Johnson noise

    Negative phase time for Scattering at Quantum Wells: A Microwave Analogy Experiment

    Full text link
    If a quantum mechanical particle is scattered by a potential well, the wave function of the particle can propagate with negative phase time. Due to the analogy of the Schr\"odinger and the Helmholtz equation this phenomenon is expected to be observable for electromagnetic wave propagation. Experimental data of electromagnetic wells realized by wave guides filled with different dielectrics confirm this conjecture now.Comment: 10 pages, 6 figure
    • …
    corecore