37 research outputs found

    Simple sequence repeat (SSR)-based genetic variability among peanut genotypes different in specific leaf weight and relative water content

    Get PDF
    The objective of this study was to compare if simple sequence repeat (SSR) markers could correctly identify peanut genotypes with difference in specific leaf weight (SLW) and relative water content (RWC). Four peanut genotypes and two water regimes (FC and 1/3 available water; 1/3 AW) were arranged in factorial randomized complete block design with six replications. The data were recorded for specific leaf weight (SLW) and relative water content (RWC), and 256 SSR markers were used to detect genetic difference. 89 SSR markers could detect polymorphism among peanut genotypes (48.9%). The numbers of alleles ranged from 1 to 6 with a mean of 2.7 alleles per locus. The polymorphic information content (PIC) values varied from 0.38 to 0.75 with a mean of 0.48. The genetics relationship among peanut genotypes was estimated. KK 4 was clustered distinct from the others genotypes, whereas ICGV 98324 and ICGV 98303 were grouped in the same cluster furthest from the KK 4. The results from this study could be useful as a source of variation for development of mapping population for drought tolerance in peanut breeding program.Keywords: Drought, water regime, polymorphism, genetic relationship, SSR markersAfrican Journal of Biotechnology Vol. 12(26), pp. 4053-4064, 26 June, 201

    Relationship between chlorophyll density and spad chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)

    Get PDF
    Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limited for Jerusalem artichoke. The objectives of this study were to examine the stability of chlorophyll density and SPAD chlorophyll meter reading (SCMR) and to evaluate the relationships between chlorophyll density and SCMR for different plant genotypes, at different plant ages and planting dates. Three Jerusalem artichoke varieties were evaluated for chlorophyll density and SCMR in a greenhouse at 13 planting dates from September to March in 2008/09 and repeated in 2009/10. The treatments were replicated four times. The chlorophyll density and SCMR evaluation were carried out at 30, 60 and 90 days after transplanting (DAT). Differences among planting dates were observed for chlorophyll density and SCMR. Evaluation at 30 DAT could best discriminate the differences in chlorophyll density and SCMR among Jerusalem artichoke genotypes. High and consistent association between chlorophyll density and SCMR was found across planting dates. SCMR can be used as a surrogate trait for chlorophyll density to screen a large number of accessions in Jerusalem artichoke breeding program for high levels of chlorophyll density

    Root responses of Jerusalem artichoke genotypes to different water regimes

    Get PDF
    The objective of this study was to determine effects of drought on selected root growth parameters and develop relationships between root parameters and tuber yield for selected Jerusalem artichoke (JA) genotypes. Three water regimes (Field capacity, 50% available soil water (AW) and 25% AW) and five JA varieties (JA 60, JA 125, JA 5, JA 89 and HEL 65) were planted with factorial treatments in a randomized complete block design with four replications. Data on root dry weight (RDW) and root: shoot ratios (RSR) were measured manually. Root diameter (RD), root length (RL), root surface area (RSA) and root volume (RV) were collected at harvest. Drought tolerance indices (DTI) were calculated for all root parameters. Drought reduced all root parameters and DTI but increased RSR in JA 60, JA 125, JA 5, and HEL 65. JA 125 had high values for all root traits and DTI of these traits under drought stress. JA 60 had high DTI of RDW, RD and RSR under mild and severe water stress. JA 5 had high DTI of RDW, RD, RL, RSR and RV under drought conditions. JA 89 and HEL 65 performed well for RDW, RD, RL and low DTI of all root characteristics. DTI for root parameters were positively correlated with tuber dry weight under mild and severe water stress. The JA 5, JA 60 and JA 125 varieties showed high DTI for some root traits, indicating that better root parameters contributed to higher tuber yield under drought stress

    Genotypic variability for tuber yield, biomass, and drought tolerance in Jerusalem artichoke germplasm

    Get PDF
    Jerusalem artichoke could be an alternative feedstock for bioenergy during times when there are shortages of other raw materials for the ethanol industry. However, insufficient water under rainfed conditions is a major cause of Jerusalem artichoke losses. Genetic variation for drought tolerance is an essential prerequisite for the development of Jerusalem artichoke cultivars with improved drought tolerance. The objectives of this study were to determine the effects of drought stress on tuber dry weight and biomass and to investigate the genotypic variability in Jerusalem artichoke germplasm. The line-source sprinkler technique was used to compare moisture responses of a range of 40 Jerusalem artichoke genotypes grown using 3 water levels. Experiments were conducted on a Yasothon soil series in Northeast Thailand during 2010/11 and 2011/12 and included extended dry periods. Drought reduced tuber dry weight and biomass, and the reductions in tuber dry weight and biomass were greater under severe drought than moderate drought conditions. Over both seasons, CN 52867, HEL 53, HEL 231, HEL 335, JA 76, HEL 65, and JA 102 × JA 89 (8) had consistently high tuber dry weight (1.3 to 4.5 t ha-1) and HEL 53, HEL 61, HEL 231, HEL 335, JA 76, JA 15, JA 89, HEL 65, HEL 256, and JA 102 × JA 89 (8) had consistently high biomass (2.0 to 6.8 t ha-1). These Jerusalem artichoke genotypes are promising parents in breeding for drought tolerance

    Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    Get PDF
    The effect of photoperiod and growing degree days (GDD) on dry matter and dry matter partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (September 20 to March 20) at Khon Kaen University, Thailand. Jerusalem artichoke genotypes responded differently to varying planting dates for harvest index, shoot dry weight, leaf area, number of tubers and tuber size. Two genotypes, CN-52867 and JA-89, were significantly more productive on the planting date of 20 September and they also performed well on planting dates of 5 October to 20 March. Plant grown in long photoperiod with a higher number of GDD produced shoot dry weight rather than greater number of harvestable tubers, while short photoperiod induced high partitioning of assimilates to harvestable tubers. Jerusalem artichoke plants grown during short photoperiod were smaller and produced larger tubers than those grown during long photoperiod. Tuber yield was relatively unchanged across planting dates. Since Jerusalem artichoke during short photoperiod had smaller plants, growing Jerusalem artichoke at higher plant population with optimum density is highly recommended to increase tuber yield. The information obtained in this study is extremely important for Jerusalem artichoke production and breeding in the tropical agro-climatic conditions such as Thailand

    Pre-chill with gibberellic acid overcomes seed dormancy of Jerusalem artichoke

    Get PDF
    Jerusalem artichoke is a valuable source of inulin, a polysaccharide. Inulin is a sustainable source of dietary fiber that enhances the immune system in humans. Although Jerusalem artichoke can be propagated vegetatively, breeders use cross-fertilization to produce novel varieties and hybrids with higher inulin yields. Seed dormancy can hinder the breeding progress because dormancy reduces the number of generations a breeder can obtain in one year. Current methods for breaking seed dormancy are time-consuming, and usually involve removing or pin-pricking the seed coat of these very small seeds, or using several weeks of seed vernalization or several months of storage. Breeders thus require better methods that are less time-consuming and achieve higher germination percentages. Here we studied germination, dormant seed, dead seed and the seedling growth rate of different Jerusalem artichoke genotypes and seed lots after seeds were treated with different methods to break seed dormancy. We evaluated fresh and stored seed lots using the following treatments: seed samples were planted on top of media moistened with either potassium nitrate, gibberellic acid or distilled water as control. Two identical sets of samples were planted: one set was germinated in a chamber at alternate 15−25 °C for 28 days, while the second set was prechilled at 5 °C for 14 days, before moving the samples to the alternate 15−25 °C chamber for 14 days. Our findings reveal that the highest germination percentage up to 85.3% was obtained when applying pre-chill with gibberellic acid. This novel dormancy-breaking treatment was thus effective in promoting fresh seed germination

    Influence of planting date and temperature on inulin content in Jerusalem artichoke (Helianthus tuberosus L.)

    Get PDF
    Abstract Lower temperatures during the dry season in tropical regions might affect inulin content and inulin yield of Jerusalem artichoke. The objective of this study was to determine the effect of planting dates during low temperature on inulin yield and content of Jerusalem artichoke. Two pot experiments were conducted during the dry seasons 2008/09 and 2009/10. Three genotypes were grown at seven planting dates. Planting Jerusalem artichoke during lower temperature periods (10-16 °C) reduced total dry weight and inulin content, whereas inulin content increased when planted during warmer periods (21-31°C). Jerusalem artichoke could be grown in all planting dates, but the most appropriate planting dates were in March. November to January should be avoided because the plants showed severe stunting with these planting dates. Moderate relationships between temperature sums and inulin content were observed in 2008/09 (r = 0.64; P < 0.01) and 2009/10 (r = 0.61; P < 0.01). The results revealed that temperature was important for producing high tuber yield having high inulin during the dry season in tropical regions

    Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage

    No full text
    Additional information on the physiological performances for different cassava genotypes would support better decision-making about desirable genetic resources for water-limited conditions. The objective of this study was to evaluate the physiological expression and yield of eight different cassava genotypes grown under a dry environment during high storage root accumulation. The eight cassava genotypes, i.e., Kasetsart 50, Huay Bong 80, Rayong 5, Rayong 7, Rayong 9, Rayong 11, Rayong 90, and CMR38-125-77 were evaluated under rain-fed upland conditions at Khon Kaen University, Thailand, during 2018 to 2020. A randomized complete block design (RCBD) with three replications was used. Soil moisture contents, chlorophyll fluorescence (Fv/Fm and Fv′/Fm′), net photosynthesis (Pn), stomatal conductance, water use efficiency (WUE), relative water content (RWC) for leaf, leaf area index (LAI), specific leaf area (SLA), starch content, crop dry weight, and starch yield were observed at 180, 270, and 360 days after planting (DAP), and weather data during the experimental period were also recorded. The results from both 2018/2019 and 2019/2020 indicated that Pn was positively and significantly correlated with stomatal conductance and Fv/Fm during the high storage root accumulation stage (270 and 360 DAP) with soil moisture content lower than field capacity. CMR38-125-77 had satisfactory performances in Pn, RWC, Fv/Fm, Fv′/Fm′, stomatal conductance, LAI, SLA, WUE, biomass, starch content, and starch yield at a last growth stage with soil moisture content lower than permanent wilting point. Significant association between crop dry weight and WUE at 360 DAP was recorded, and CMR38-125-77 and Kasetsart 50 were classified as favorable genotypes with high WUE and biomass

    Determination of Cassava Leaf Area for Breeding Programs

    No full text
    The evaluation of leaf area provides valuable information for decision-making for the cassava yield trail. The objectives of this study were (1) to determine the relationship between the leaf area and yield of the segregating populations and (2) to investigate the suitable mathematical model for calculating cassava leaf area. The single-row trial for 60 segregating progenies of Kasetsart 50 × CMR38–125–77 was conducted from 2021 to 2022. The trial for eighteen progenies and the Kasetsart 50 and CMR38–125–77 was carried out in 2022. The sampled leaves for each genotype were collected to measure the leaf area. The length (L) and width of the central lobe (W), number of lobes (N), the product of the length and width (L × W; K), and the product of the length and number of lobes (L × N; J) were recorded for developing the mathematical models. The result showed that there were statistically significant correlations between the maximum individual leaf area and the total crop fresh weight and storage root fresh weight. The mathematical model LA = −3.39L + 2.04K + 1.01J − 15.10 is appropriate to estimate the maximum individual leaf area and leaf area index (LAI). This mathematical model also provided the estimated individual maximum leaf area that had the highest correlation with actual biomass at the final harvest as compared to the other three functions. The results showed statistical significance for the estimated LAI and biomass correlation
    corecore