242 research outputs found
Prototyping Operational Autonomy for Space Traffic Management
Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities
Detection of Vibrationally Excited CO in IRC+10216
Using the Submillimeter Array we have detected the J=3-2 and 2-1 rotational
transitions from within the first vibrationally excited state of CO toward the
extreme carbon star IRC+10216 (CW Leo). The emission remains spatially
unresolved with an angular resolution of ~2" and, given that the lines
originate from energy levels that are ~3100 K above the ground state, almost
certainly originates from a much smaller (~10^{14} cm) sized region close to
the stellar photosphere. Thermal excitation of the lines requires a gas density
of ~10^{9} cm^{-3}, about an order of magnitude higher than the expected gas
density based previous infrared observations and models of the inner dust shell
of IRC+10216.Comment: Accepted for publication in ApJ Letter
Fully Immersive Virtual Reality for Skull-base Surgery: Surgical Training and Beyond
Purpose: A virtual reality (VR) system, where surgeons can practice
procedures on virtual anatomies, is a scalable and cost-effective alternative
to cadaveric training. The fully digitized virtual surgeries can also be used
to assess the surgeon's skills using measurements that are otherwise hard to
collect in reality. Thus, we present the Fully Immersive Virtual Reality System
(FIVRS) for skull-base surgery, which combines surgical simulation software
with a high-fidelity hardware setup.
Methods: FIVRS allows surgeons to follow normal clinical workflows inside the
VR environment. FIVRS uses advanced rendering designs and drilling algorithms
for realistic bone ablation. A head-mounted display with ergonomics similar to
that of surgical microscopes is used to improve immersiveness. Extensive
multi-modal data is recorded for post-analysis, including eye gaze, motion,
force, and video of the surgery. A user-friendly interface is also designed to
ease the learning curve of using FIVRS.
Results: We present results from a user study involving surgeons with various
levels of expertise. The preliminary data recorded by FIVRS differentiates
between participants with different levels of expertise, promising future
research on automatic skill assessment. Furthermore, informal feedback from the
study participants about the system's intuitiveness and immersiveness was
positive.
Conclusion: We present FIVRS, a fully immersive VR system for skull-base
surgery. FIVRS features a realistic software simulation coupled with modern
hardware for improved realism. The system is completely open-source and
provides feature-rich data in an industry-standard format.Comment: IPCAI/IJCARS 202
Emergent Surgical Airway Skills: Time to Re-evaluate the Competencies
Introduction: One of the most challenging scenarios an anesthesia provider can face is treating a can\u27t intubate can\u27t ventilate (CICV) patient. The incidence of CICV is estimated to be around one in 10,000 cases. According to the American Society of Anesthesiology Closed Claims Study, adverse respiratory events are the most common type of injury, with difficult intubation and ventilation contributing to the majority of these cases. The objective of this non-interventional quality improvement project was to evaluate the prior training, exposure, and self-reported confidence in handling the CICV scenario among anesthesia providers at Henry Ford Hospital in Detroit, MI.
Methods: An online questionnaire was distributed via email to all residents, certified registered nurse anesthetists (CRNAs), and attending anesthesiologists in March 2021. The email contained a link to an online questionnaire via Microsoft Forms (Microsoft Corporation, Redmond, WA). Univariate group comparisons were carried out between the respondents\u27 role (attending, CRNA, or resident), as well as between the number of years that the respondents were in practice (\u3c 5 years, 5-10 years, \u3e 10 years).
Results: Out of the total 170 anesthesia providers, 119 participated in the study where 54 (45%) were attendings, 44 (37%) were residents, and 21 (18%) were CRNAs. The majority (75%) did not know the surgical airway kit location, and 87% had not performed the surgical airway procedure before. The vast majority (96.7%) recommended simulation training compared to online training or lecture series, and just over 50% recommended annual training frequency. When looking at the differences in responses based on years of experience as an anesthesia provider, the majority of those with \u3e 10 years in practice knew how to perform the surgical airway technique while respondents with \u3c 5 years did not know how to perform the technique, and 50% of those with five to 10 years experience knew how to perform the surgical airway procedure for a CICV scenario.
Conclusion: Although there were many significant differences observed between the various provider roles and years in practice, surprisingly, the responses revealed both a lack of experience and confidence in performing the surgical airway procedure in all provider roles. These findings highlight a need for better emergency airway teaching and training. These findings will be used to guide the design and implementation of improved surgical airway training for residents, CRNAs, and attending anesthesiologists with the goal of better preparedness for handling a CICV scenario
Sequential Organ Failure Assessment (SOFA) Score and Mortality Prediction in Patients With Severe Respiratory Distress Secondary to COVID-19
Background: This study looks at the validity of the sequential organ failure assessment score (SOFA) in detecting mortality in patients with Coronavirus disease of 2019 (COVID-19) pneumonia. Also, it is looking to determine the optimal SOFA score that will discriminate between mortality and survival.
Methods: It is a retrospective chart review of the patients admitted to Henry Ford Hospital from March 2020 to December 2020 with COVID-19 pneumonia who developed severe respiratory distress. We collected the following information; patient demographics (age, sex, body mass index), co-morbidities (history of diabetes mellitus, chronic kidney disease, chronic obstructive pulmonary disease, coronary artery disease, or cancer), SOFA scores (the ratio of arterial oxygen tension (PaO(2)) to the fraction of inspired oxygen, Glasgow Coma Scale (GCS) score, mean arterial pressure, serum creatinine level, bilirubin level, and platelet count) as well as inpatient mortality.
Results: There were 320 patients; out of these, 111 were intubated. The receiver operating characteristic (ROC) curve for SOFA at the moment of inclusion in the study had an area under the curve of 0.883. The optimal point for discrimination between mortality and survival is SOFA of 5. A SOFA score of less than two is associated with 100% survival, while a score of more than 11 is associated with 100% mortality.
Conclusions: SOFA score in COVID-19 patients with severe respiratory distress strongly correlates with the initial SOFA score. It is a valuable tool for predicting mortality in COVID-19 patients
Effect of Intubation Timing on the Outcome of Patients With Severe Respiratory Distress Secondary to COVID-19 Pneumonia.
Background: The optimal timing of intubation for critically ill patients with severe respiratory illness remains controversial among healthcare providers. The coronavirus disease 2019 (COVID-19) pandemic has raised even more questions about when to implement this life-saving therapy. While one group of providers prefers early intubation for patients with respiratory distress because these patients may deteriorate rapidly without it, other providers believe that intubation should be delayed or avoided because of its associated risks including worse outcomes.
Research question: Our objective was to assess whether the timing of intubation in patients with severe COVID-19 pneumonia was associated with differences in mortality or other outcomes.
Study design and methods: This was a single-center retrospective observational cohort study. We analyzed outcomes of patients who were intubated secondary to COVID-19 pneumonia between March 13, 2020, and December 12, 2020, at Henry Ford Hospital in Detroit, Michigan. Patients were categorized into two groups: early intubated (intubated within 24 hours of the onset of severe respiratory distress) and late intubated (intubated after 24 hours of the onset of severe respiratory distress). Demographics, comorbidities, respiratory rate oxygenation (ROX) index, sequential organ failure assessment (SOFA) score, and treatment received were compared between groups. The primary outcome was mortality. Secondary outcomes were ventilation time, intensive care unit stay, hospital length of stay, and discharge disposition. Post hoc and Kaplan-Meier survival analyses were performed.
Results: A total of 110 patients were included: 55 early intubated and 55 late intubated. We did not observe a significant difference in overall mortality between the early intubated (43%) and the late intubated groups (53%) (p = 0.34). There was no statistically significant difference in patients\u27 baseline characteristics including SOFA scores (the early intubation group had a mean score of 7.5 compared to 6.7 in the late intubation group). Based on the ROX index, the early intubation group had significantly more patients with a reduced risk of intubation (45%) than the late group (27%) (p = 0.029). The early intubation group was treated with a high-flow nasal cannula at a significantly lower rate (47%) than the late intubation group (83%) (p \u3c 0.001). Significant differences in patient baseline characteristics, treatment received, and other outcomes were not observed. Post hoc analysis adjusting for SOFA score between 0 and 9 revealed significantly higher mortality in the late intubation group (49%) than in the early intubation group (26%) (p = 0.03). Patients in the 0 to 9 SOFA group who were intubated later had 2.7 times the odds of dying during hospital admission compared to patients who were intubated early (CI, 1.09-6.67).
Interpretation: The timing of intubation for patients with severe COVID-19 pneumonia was not significantly associated with overall mortality or other patient outcomes. However, within the subgroup of patients with SOFA scores of 9 or lower at the time of intubation, patients intubated after 24 hours of the onset of respiratory distress had a higher risk of death than those who were intubated within 24 hours of respiratory distress. Thus, patients with COVID-19 pneumonia who are not at a high level of organ dysfunction may benefit from early mechanical ventilation
Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue
Fenretinide (FEN) is a synthetic retinoid that inhibits obesity and insulin resistance in high-fat diet (HFD)-fed mice and completely prevents 3T3-L1 pre-adipocyte differentiation. The aim of this study was to determine the mechanism(s) of FEN action in 3T3-L1 adipocytes and in mice. We used the 3T3-L1 model of adipogenesis, fully differentiated 3T3-L1 adipocytes and adipose tissue from HFD-induced obese mice to investigate the mechanisms of FEN action. We measured expression of adipogenic and retinoid genes by qPCR and activation of nutrient-signalling pathways by western blotting. Global lipid and metabolite analysis was performed and specific ceramide lipid species measured by liquid chromatography-mass spectrometry. We provide direct evidence that FEN inhibits 3T3-L1 adipogenesis via RA-receptor (RAR)-dependent signaling. However, RARα antagonism did not prevent FEN-induced decreases in lipid levels in mature 3T3-L1 adipocytes, suggesting an RAR-independent mechanism. Lipidomics analysis revealed that FEN increased dihydroceramide lipid species 5- to 16-fold in adipocytes, indicating an inhibition of the final step of ceramide biosynthesis. A similar blockade in adipose tissue from FEN-treated obese mice was associated with a complete normalisation of impaired mitochondrial β-oxidation and tricarboxylic acid cycle flux. The FEN catabolite, 4-oxo-N-(4-hydroxyphenyl)retinamide (4-OXO), also decreased lipid accumulation without affecting adipogenesis. FEN and 4-OXO (but not RA) treatment additionally led to the activation of p38-MAPK, peIF2α and autophagy markers in adipocytes. Overall our data reveals FEN utilises both RAR-dependent and -independent pathways to regulate adipocyte biology, both of which may be required for FEN to prevent obesity and insulin resistance in vivo
Oxidative costs of reproduction in mouse strains selected for different levels of food intake and which differ in reproductive performance
We are grateful to the animal house staff for their care of the animals. This work was supported in part by the US National Institute of Health grants R01AG043972 to J.R.S. and D.B.A. and P30AG050886 and P30DK056336 to D.B.A. The opinions expressed are those of the authors and do not necessarily represent those of the N.I.H. or any other organization. A.H.A.J. was supported by an Iraqi government student scholarship.Peer reviewedPublisher PD
- …