13,281 research outputs found

    Timelike self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for timelike self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively using the theory of dynamical systems.Comment: 23 pages, 6 eps-figure

    Electronic structure of GaAs1-xNx alloy by soft-X-ray absorption and emission: Origin of the reduced optical efficiency

    Full text link
    The local electronic structure of N atoms in a diluted GaAs1-xNx (x=3%) alloy, in view of applications in optoelectronics, is determined for the first time using soft-X-ray absorption (SXA) and emission (SXE). Deviations from crystalline GaN, in particular in the conduction band, are dramatic. Employing the orbital character and elemental specificity of the SXE/SXA spectroscopies, we identify a charge transfer from the N atoms at the valence band maximum, reducing the overlap with the wavefunction in conduction band minimum, as the main factor limiting the optical efficiency of GaAs1-xNx alloys. Moreover, a k-conserving process of resonant inelastic x-ray scattering involving the L1 derived valence and conduction states is discovered.Comment: 3 pages, physica status solidi (Rapid Research Notes), in pres

    Spatially self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for spatially self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure

    Chiral surfaces self-assembling in one-component systems with isotropic interactions

    Get PDF
    We show that chiral symmetry can be broken spontaneously in one-component systems with isotropic interactions, i.e. many-particle systems having maximal a priori symmetry. This is achieved by designing isotropic potentials that lead to self-assembly of chiral surfaces. We demonstrate the principle on a simple chiral lattice and on a more complex lattice with chiral super-cells. In addition we show that the complex lattice has interesting melting behavior with multiple morphologically distinct phases that we argue can be qualitatively predicted from the design of the interaction.Comment: 4 pages, 4 figure

    The Forest Resources of the Former European USSR

    Get PDF
    This book, the second in a series, reports the results of a four-year study of the effects of air pollutants, ineffective silviculture practices and other factors on forests in the European sector of the former Soviet Union. The specific objectives of this book are: to gain an impartial view of potential developments of the forest resources in the European sector of the former USSR; to build alternative and consistent scenarios of the future developments; to illustrate the effects of forest decline from air pollutants; to identify meaningful policy options concerning the forest resources in the area; to support future policy decisions concerning the forest resources of the region

    Light-cone analysis of ungauged and topologically gauged BLG theories

    Full text link
    We consider three-dimensional maximally superconformal Bagger-Lambert-Gustavsson (BLG) theory and its topologically gauged version (constructed recently in arXiv:0809.4478 [hep-th]) in the light-cone gauge. After eliminating the entire Chern-Simons gauge field, the ungauged BLG theory looks more conventional and, apart from the order of the interaction terms, resembles N=4 super-Yang-Mills theory in four dimensions. The light-cone superspace version of the BLG theory is given to quadratic and quartic order and some problems with constructing the sixth order interaction terms are discussed. In the topologically gauged case, we analyze the field equations related to the three Chern-Simons type terms of N=8 conformal supergravity and discuss some of the special features of this theory and its couplings to BLG.Comment: 22 pages; v2 some typos correcte

    The state space and physical interpretation of self-similar spherically symmetric perfect-fluid models

    Full text link
    The purpose of this paper is to further investigate the solution space of self-similar spherically symmetric perfect-fluid models and gain deeper understanding of the physical aspects of these solutions. We achieve this by combining the state space description of the homothetic approach with the use of the physically interesting quantities arising in the comoving approach. We focus on three types of models. First, we consider models that are natural inhomogeneous generalizations of the Friedmann Universe; such models are asymptotically Friedmann in their past and evolve fluctuations in the energy density at later times. Second, we consider so-called quasi-static models. This class includes models that undergo self-similar gravitational collapse and is important for studying the formation of naked singularities. If naked singularities do form, they have profound implications for the predictability of general relativity as a theory. Third, we consider a new class of asymptotically Minkowski self-similar spacetimes, emphasizing that some of them are associated with the self-similar solutions associated with the critical behaviour observed in recent gravitational collapse calculations.Comment: 24 pages, 12 figure
    • …
    corecore