64 research outputs found
Altered synaptic properties during integration of adult-born hippocampal neurons following a seizure insult
Pathological conditions affect several stages of neurogenesis in the adult brain, including proliferation, survival, cell fate, migration, and functional integration. Here we explored how a pathological environment modulates the heterogeneous afferent synaptic input that shapes the functional properties of newly formed neurons. We analyzed the expression of adhesion molecules and other synaptic proteins on adult-born hippocampal neurons formed after electrically-induced partial status epilepticus (pSE). New cells were labeled with a GFP-retroviral vector one week after pSE. One and three weeks thereafter, synaptic proteins were present on dendritic spines and shafts, but without differences between pSE and control group. In contrast, at six weeks, we found fewer dendritic spines and decreased expression of the scaffolding protein PSD-95 on spines, without changes in expression of the adhesion molecules N-cadherin or neuroligin-1, primarily located at excitatory synapses. Moreover, we detected an increased expression of the inhibitory scaffolding protein gephyrin in newborn but not mature neurons after SE. However, this increase was not accompanied by a difference in GABA expression, and there was even a region-specific decrease in the adhesion molecule neuroligin-2 expression, both in newborn and mature neurons. Neuroligin-2 clusters co-localized with presynaptic cholecystokinin terminals, which were also reduced. The expression of neuroligin-4 and glycine receptor was unchanged. Increased postsynaptic clustering of gephyrin, without an accompanying increase in GABAergic input or neuroligin-2 and -4 expression, the latter important for clustering of GABAA and glycine receptors, respectively, could imply an increased but altered inhibitory connectivity specific for newborn neurons. The changes were transient and expression of both gephyrin and NL-2 was normalized 3 months post-SE. Our findings indicate that seizure-induced brain pathology alters the sub-cellular expression of synaptic adhesion molecules and scaffolding proteins related to particularly inhibitory but also excitatory synapses, which may yield functional consequences for the integration of adult-born neurons
Mesenchymal Stromal Cells Engage Complement and Complement Receptor Bearing Innate Effector Cells to Modulate Immune Responses
Infusion of human third-party mesenchymal stromal cells (MSCs) appears to be a promising therapy for acute graft-versus-host disease (aGvHD). To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46) and DAF (CD55), but were protected from complement lysis via expression of protectin (CD59). Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18)-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells
Balance in single-limb stance after surgically treated ankle fractures: a 14-month follow-up
BACKGROUND: The maintenance of postural control is fundamental for different types of physical activity. This can be measured by having subjects stand on one leg on a force plate. Many studies assessing standing balance have previously been carried out in patients with ankle ligament injuries but not in patients with ankle fractures. The aim of this study was to evaluate whether patients operated on because of an ankle fracture had impaired postural control compared to an uninjured age- and gender-matched control group. METHODS: Fifty-four individuals (patients) operated on because of an ankle fracture were examined 14 months postoperatively. Muscle strength, ankle mobility, and single-limb stance on a force-platform were measured. Average speed of centre of pressure movements and number of movements exceeding 10 mm from the mean value of centre of pressure were registered in the frontal and sagittal planes on a force-platform. Fifty-four age- and gender-matched uninjured individuals (controls) were examined in the single-limb stance test only. The paired Student t-test was used for comparisons between patients' injured and uninjured legs and between side-matched legs within the controls. The independent Student t-test was used for comparisons between patients and controls. The Chi-square test, and when applicable, Fisher's exact test were used for comparisons between groups. Multiple logistic regression was performed to identify factors associated with belonging to the group unable to complete the single-limb stance test on the force-platform. RESULTS: Fourteen of the 54 patients (26%) did not manage to complete the single-limb stance test on the force-platform, whereas all controls managed this (p < 0.001). Age over 45 years was the only factor significantly associated with not managing the test. When not adjusted for age, decreased strength in the ankle plantar flexors and dorsiflexors was significantly associated with not managing the test. In the 40 patients who managed to complete the single-limb stance test no differences were found between the results of patients' injured leg and the side-matched leg of the controls regarding average speed and the number of centre of pressure movements. CONCLUSION: One in four patients operated on because of an ankle fracture had impaired postural control compared to an age- and gender-matched control group. Age over 45 years and decreased strength in the ankle plantar flexors and dorsiflexors were found to be associated with decreased balance performance. Further, longitudinal studies are required to evaluate whether muscle and balance training in the rehabilitation phase may improve postural control
Contribution of Chondroitin Sulfate A to the Binding of Complement Proteins to Activated Platelets
Exposure of chondroitin sulfate A (CS-A) on the surface of activated platelets is well established. The aim of the present study was to investigate to what extent CS-A contributes to the binding of the complement recognition molecule C1q and the complement regulators C1 inhibitor (C1INH), C4b-binding protein (C4BP), and factor H to platelets.Human blood serum was passed over Sepharose conjugated with CS-A, and CS-A-specific binding proteins were identified by Western blotting and mass spectrometric analysis. C1q was shown to be the main protein that specifically bound to CS-A, but C4BP and factor H were also shown to interact. Binding of C1INH was dependent of the presence of C1q and then not bound to CS-A from C1q-depleted serum. The specific interactions observed of these proteins with CS-A were subsequently confirmed by surface plasmon resonance analysis using purified proteins. Importantly, C1q, C4BP, and factor H were also shown to bind to activated platelets and this interaction was inhibited by a CS-A-specific monoclonal antibody, thereby linking the binding of C1q, C4BP, and factor H to exposure of CS-A on activated platelets. CS-A-bound C1q was also shown to amplify the binding of model immune complexes to both microtiter plate-bound CS-A and to activated platelets.This study supports the concept that CS-A contributes to the binding of C1q, C4BP, and factor H to platelets, thereby adding CS-A to the previously reported binding sites for these proteins on the platelet surface. CS-A-bound C1q also seems to amplify the binding of immune complexes to activated platelets, suggesting a role for this molecule in immune complex diseases
Effects of a training program after surgically treated ankle fracture: a prospective randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>Despite conflicting results after surgically treated ankle fractures few studies have evaluated the effects of different types of training programs performed after plaster removal. The aim of this study was to evaluate the effects of a 12-week standardised but individually suited training program (training group) versus usual care (control group) after plaster removal in adults with surgically treated ankle fractures.</p> <p>Methods</p> <p>In total, 110 men and women, 18-64 years of age, with surgically treated ankle fracture were included and randomised to either a 12-week training program or to a control group. Six and twelve months after the injury the subjects were examined by the same physiotherapist who was blinded to the treatment group. The main outcome measure was the Olerud-Molander Ankle Score (OMAS) which rates symptoms and subjectively scored function. Secondary outcome measures were: quality of life (SF-36), timed walking tests, ankle mobility tests, muscle strength tests and radiological status.</p> <p>Results</p> <p>52 patients were randomised to the training group and 58 to the control group. Five patients dropped out before the six-month follow-up resulting in 50 patients in the training group and 55 in the control group. Nine patients dropped out between the six- and twelve-month follow-up resulting in 48 patients in both groups. When analysing the results in a mixed model analysis on repeated measures including interaction between age-group and treatment effect the training group demonstrated significantly improved results compared to the control group in subjects younger than 40 years of age regarding OMAS (p = 0.028), muscle strength in the plantar flexors (p = 0.029) and dorsiflexors (p = 0.030).</p> <p>Conclusion</p> <p>The results of this study suggest that when adjusting for interaction between age-group and treatment effect the training model employed in this study was superior to usual care in patients under the age of 40. However, as only three out of nine outcome measures showed a difference, the beneficial effect from an additional standardised individually suited training program can be expected to be limited. There is need for further studies to elucidate how a training program should be designed to increase and optimise function in patients middle-aged or older.</p> <p>Trial Registration</p> <p>Current Controlled Trials ACTRN12609000327280</p
- …