19,192 research outputs found

    The Low-level Spectrum of the W3W_3 String

    Get PDF
    We investigate the spectrum of physical states in the W3W_3 string theory, up to level 2 for a multi-scalar string, and up to level 4 for the two-scalar string. The (open) W3W_3 string has a photon as its only massless state. By using screening charges to study the null physical states in the two-scalar W3W_3 string, we are able to learn about the gauge symmetries of the states in the multi-scalar W3W_3 string.Comment: 31 pages, Plain Tex, CTP TAMU-70/92, Goteborg ITP 92-43, Imperial/TP/91-92/22, KCL-TH-92-

    Signatures of Wigner Localization in Epitaxially Grown Nanowires

    Full text link
    It was predicted by Wigner in 1934 that the electron gas will undergo a transition to a crystallized state when its density is very low. Whereas significant progress has been made towards the detection of electronic Wigner states, their clear and direct experimental verification still remains a challenge. Here we address signatures of Wigner molecule formation in the transport properties of InSb nanowire quantum dot systems, where a few electrons may form localized states depending on the size of the dot (i.e. the electron density). By a configuration interaction approach combined with an appropriate transport formalism, we are able to predict the transport properties of these systems, in excellent agreement with experimental data. We identify specific signatures of Wigner state formation, such as the strong suppression of the antiferromagnetic coupling, and are able to detect the onset of Wigner localization, both experimentally and theoretically, by studying different dot sizes.Comment: 4 pages, 4 figure

    Experimental f-value and isotopic structure for the Ni I line blended with [OI] at 6300A

    Full text link
    We have measured the oscillator strength of the Ni I line at 6300.34 \AA, which is known to be blended with the forbidden [O I] λ\lambda6300 line, used for determination of the oxygen abundance in cool stars. We give also wavelengths of the two isotopic line components of 58^{58}Ni and 60^{60}Ni derived from the asymmetric laboratory line profile. These two line components of Ni I have to be considered when calculating a line profile of the 6300 \AA\ feature observed in stellar and solar spectra. We also discuss the labelling of the energy levels involved in the Ni I line, as level mixing makes the theoretical predictions uncertain.Comment: Accepted for publication in ApJLetter

    Ground-state power quenching in two-state lasing quantum dot lasers

    Get PDF
    The paper analyses theoretically the quenching of the ground state (GS) power observed in InAs/GaAs quantum dot lasers when emitting simultaneously from both ground state and excited state. The model, based on a set of rate equations for the electrons, holes, and photons, shows that the power quenching is caused by the different time scales of the electron and hole intra-level dynamic, as well as by the long transport time of the holes in the GaAs barrier. The results presented also evidence how the very different dynamics of electrons and holes have other important consequences on the laser behavior; we show for example that the electron and hole carrier densities of the states resonant with lasing modes are never clamped at the threshold value, and that the damping of relaxation oscillations is strongly influenced by the hole dynamics

    Relativistic Compact Objects in Isotropic Coordinates

    Full text link
    We present a matrix method for obtaining new classes of exact solutions for Einstein's equations representing static perfect fluid spheres. By means of a matrix transformation, we reduce Einstein's equations to two independent Riccati type differential equations for which three classes of solutions are obtained. One class of the solutions corresponding to the linear barotropic type fluid with an equation of state p=ÎłÏp=\gamma \rho is discussed in detail.Comment: 9 pages, no figures, accepted for publication in Pramana-Journal of Physic

    QuantEYE: The Quantum Optics Instrument for OWL

    Full text link
    QuantEYE is designed to be the highest time-resolution instrument on ESO:s planned Overwhelmingly Large Telescope, devised to explore astrophysical variability on microsecond and nanosecond scales, down to the quantum-optical limit. Expected phenomena include instabilities of photon-gas bubbles in accretion flows, p-mode oscillations in neutron stars, and quantum-optical photon bunching in time. Precise timescales are both variable and unknown, and studies must be of photon-stream statistics, e.g., their power spectra or autocorrelations. Such functions increase with the square of the intensity, implying an enormously increased sensitivity at the largest telescopes. QuantEYE covers the optical, and its design involves an array of photon-counting avalanche-diode detectors, each viewing one segment of the OWL entrance pupil. QuantEYE will work already with a partially filled OWL main mirror, and also without [full] adaptive optics.Comment: 7 pages; Proceedings from meeting 'Instrumentation for Extremely Large Telescopes', held at Ringberg Castle, July 2005 (T.Herbst, ed.
    • 

    corecore