4 research outputs found

    A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis

    Get PDF
    More than 145 mutations have been found in the gene CuZn-Superoxide dismutase (SOD1) in patients with amyotrophic lateral sclerosis (ALS). The vast majority are easily detected nucleotide mutations in the coding region. In a patient from a Swiss ALS family with half-normal erythrocyte SOD1 activity, exon flanking sequence analysis revealed a novel thymine to guanine mutation 7 bp upstream of exon 4 (c.240-7T>G). The results of splicing algorithm analyses were ambiguous, but five out of seven analysis tools suggested a potential novel splice site that would add six new base pairs to the mRNA. If translated, this mRNA would insert Ser and Ile between Glu78 and Arg79 in the SOD1 protein. In fibroblasts from the patient, the predicted mutant transcript and the mutant protein were both highly expressed, and despite the location of the insertion into the metal ion-binding loop IV, the SOD1 activity appeared high. In erythrocytes, which lack protein synthesis and are old compared with cultured fibroblasts, both SOD1 protein and enzymic activity was 50% of controls. Thus, the usage of the novel splice site is near 100%, and the mutant SOD1 shows the reduced stability typical of ALS-associated mutant SOD1s. The findings suggests that this novel intronic mutation is causing the disease and highlights the importance of wide exon-flanking sequencing and transcript analysis combined with erythrocyte SOD1 activity analysis in comprehensive search for SOD1 mutations in ALS. We find that there are potentially more SOD1 mutations than previously reporte

    Association of NFE2L2 and KEAP1 haplotypes with amyotrophic lateral sclerosis.

    No full text
    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron syndrome influenced by oxidative stress. The transcription factor Nrf2 and its repressor Keap1 constitute an important defence system in cellular protection against oxidative stress. Here we hypothesize that common genetic variations in the genes NFE2L2 and KEAP1, encoding Nrf2 and Keap1, may influence the risk and phenotype of ALS. Five hundred and twenty-two Swedish patients with sporadic ALS (SALS) and 564 Swedish control subjects were studied. Eight tag SNPs in NFE2L2 and three tag SNPs in KEAP1 were genotyped by allelic discrimination and three functional NFE2L2 promoter SNPs were genotyped by sequencing. One NFE2L2 haplotype (GGGAC) was associated with decreased risk of SALS (OR = 0.62 per allele, p = 0.003) and one haplotype in KEAP1 (CGG) was associated with later SALS onset (+3.4 years per allele, p = 0.015). When stratified by subgroup, one haplotype in NFE2L2, GAGCAGA including three functional promoter SNPs associated with high Nrf2 protein expression, was associated with 4.0 years later disease onset per allele in subgroup ALS (p = 0.008). In conclusion, these results suggest that variations in NFE2L2 and KEAP1, encoding two central proteins in cellular oxidative stress defence, may influence SALS pathogenesis

    A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis

    No full text
    More than 145 mutations have been found in the gene CuZn-Superoxide dismutase (SOD1) in patients with amyotrophic lateral sclerosis (ALS). The vast majority are easily detected nucleotide mutations in the coding region. In a patient from a Swiss ALS family with half-normal erythrocyte SOD1 activity, exon flanking sequence analysis revealed a novel thymine to guanine mutation 7 bp upstream of exon 4 (c.240-7T<G). The results of splicing algorithm analyses were ambiguous, but five out of seven analysis tools suggested a potential novel splice site that would add six new base pairs to the mRNA. If translated, this mRNA would insert Ser and Ile between Glu78 and Arg79 in the SOD1 protein. In fibroblasts from the patient, the predicted mutant transcript and the mutant protein were both highly expressed, and despite the location of the insertion into the metal ion-binding loop IV, the SOD1 activity appeared high. In erythrocytes, which lack protein synthesis and are old compared with cultured fibroblasts, both SOD1 protein and enzymic activity was 50% of controls. Thus, the usage of the novel splice site is near 100%, and the mutant SOD1 shows the reduced stability typical of ALS-associated mutant SOD1s. The findings suggests that this novel intronic mutation is causing the disease and highlights the importance of wide exon-flanking sequencing and transcript analysis combined with erythrocyte SOD1 activity analysis in comprehensive search for SOD1 mutations in ALS. We find that there are potentially more SOD1 mutations than previously reported
    corecore