745 research outputs found

    Efficient superfluorescent light sources with broad bandwidth

    No full text
    We demonstrate various efficient broad-band light sources at ~1µm wavelength with a 3dB bandwidth of up to 65nm at 108mW output power, based on rare-earth doped silica fibers and a simple adjustable spectral filter

    Lifetime quenching in Yb doped fibres

    No full text
    We have discovered that in ytterbium-doped silica fibres the excited state lifetime of a fraction of the Yb ions can be quenched to a very small value, leading to a strong unbleachable loss. This unexpected behaviour seems to be caused by some, yet unidentified, impurity or structural defect. It is of considerable relevance for various Yb doped lasers and-amplifiers including Er:Yb codoped fibres as used in telecommunication amplifiers although it should also be emphasized that fibres can be produced that are free from the quenching effect

    Sensitivity of Nuclear Transition Frequencies to Temporal Variation of the Fine Structure Constant or the Strong Interaction

    Get PDF
    There exist in nature a few nuclear isomers with very low (eV) excitation energies, and the combination of low energy and narrow width makes them possible candidates for laser-based investigations. The best candidate is the lowest-energy excited state known in nuclear physics, the 7.6(5) eV isomer of 229^{229}Th. A recent study suggests that a measurement of the temporal variation of the excitation energy of this isomer would have 5-6 orders of magnitude enhanced sensitivity to a variation of the fine structure constant (α≅1/137.036\alpha \cong 1/137.036) or of a strong interaction parameter (mq/ΛQCDm_q/\Lambda_{QCD}). We reexamine the physics involved in these arguments. By invoking the Feynman-Hellmann Theorem we argue that there is no expectation of significantly enhanced sensitivity to a variation in the fine structure constant (beyond that obtained from experimental considerations such as the low energy and narrow width of the isomer). A similar argument applies to the strong interaction, but evaluating the shift due to temporal variations of the underlying parameters of the strong interaction may be beyond current nuclear structure techniques.Comment: 4 Pages, no figure

    Single-frequency ytterbium-doped fibre laser stabilised by spatial hole burning

    No full text
    We have exploited spatial hole burning to achieve remarkably stable single-frequency operation and mode-hop-free tuning over 300 free spectral ranges in an ytterbium-doped fiber laser with a sample standing-wave geometry. This approach makes possible stable and narrow-linewidth single-frequency fiber lasers that do not require components such as Faraday isolators, fiber couplers, and Fabry-Perot filters

    High power femtosecond source based on passively mode-locked 1055nm VECSEL and Yb-fibre power amplifier

    No full text
    We report 5 ns pulses at 160 W average power and 910 repetition rate from a passively mode-locked VECSEL source seeding an Yb-doped fibre power amplifier. The amplified pulses were compressed to 291 fs duration

    Methodology for Hydrogeochemical Sampling to Characterise Groundwaters in Crystalline Bedrock: Developments Made within the Swedish Radwaste Programme

    Get PDF
    The search by SKB (Swedish Nuclear Fuel and Waste Management Co.) for a site to locate the deep geological repository for spent nuclear fuel in Sweden has involved geoscientific investigations at several locations since the 1970s. The objectives were to characterise geologically a bedrock volume as well as its hydrogeology and hydrochemistry. To acquire high-quality hydrogeochemical data, a complete system for groundwater sampling and analysis, as well as for interpretation strategies, has been developed through a continuous process of modification and refinement. Since the largest part of the Swedish bedrock is composed of granitoids, the site investigations had to adapt to the special difficulties of fractured crystalline rocks. This paper discusses the problems with groundwater sampling that are specific to fractured crystalline rocks and describes the solutions adopted and methods developed by SKB since the early 2000s during the site investigations. The methodology described in this paper for the characterisation of deep groundwaters in crystalline rocks is not only applicable in the context of radioactive waste disposal but also useful when sampling groundwaters for any purpose in such rocks. Sampling of groundwaters in fractured rocks at depth, often down to approximately 1, 000 m, involves special challenges since the natural conditions of the groundwater are easily disturbed, especially by the initial drilling, but also by every subsequent activity performed in the borehole, including the actual groundwater sampling. The sampling strategy presented in this paper shows that planning of the sampling preferably starts already when the drilling procedure is decided. Each following step is described in detail and includes tracing the drilling fluid, selecting the best borehole sections to sample, procedures for the actual sampling, and selection of analytical protocol; all this with the goal of taking representative samples. Although the evaluation of the sampling uncertainties is not a straightforward procedure, an adequate categorisation routine has been established to classify groundwater samples regarding sample quality, representativeness, and suitability for further interpretations and modelling

    Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    Get PDF
    Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration

    Lifetime quenching in Yb-doped fibres

    Full text link
    We have discovered that in ytterbium-doped silica fibres the excited state lifetime of a fraction of the Yb ions can be quenched to a very small value, leading to a strong unbleachable loss. This unexpected behaviour seems to be caused by some, yet unidentified, impurity or structural defect. It is of considerable relevance for various Yb doped lasers and-amplifiers including Er:Yb codoped fibres as used in telecommunication amplifiers although it should also be emphasized that fibres can be produced that are free from the quenching effect

    Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry

    Full text link
    Two-particle correlations have been measured for identified negative pions from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of kT is presented, including a full correction for the resolution effects of the apparatus. The cross term Rout-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Qinv and Qspace have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence, fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.Comment: 13 pages including 10 figure
    • …
    corecore