24 research outputs found

    Analysis of the riverbed backscattered signal registered by ADCPs in different bedload transport conditions – field application

    Get PDF
    Acoustic Doppler current profilers (ADCP) were deployed to investigate the backscattering (BS) signal in three navigable rivers, in different bedload transport conditions. This study aims to demonstrate that the BS strength, as an additional variable to the apparent bedload velocity, improves the characterization of the bedload transport using ADCPs. The M9 -3 MHz and the vertical beam M9 - 0.5 MHz showed decline of the BS strength as the bedload intensity increased, whereas the RDI -1.2 MHz was relatively insensitive. The correlation between the median grain size and the BS strength for the 0.5 MHz was linear, for the 3 MHz the BS strength was attenuated in the active layer, and for 1.2 MHz, it revealed a parabolic distribution. Moreover, the analyses of the ADCP measured variables, using wavelet transformations and unsupervised machine learning, highlighted the importance of the spatial and temporal variance and transient nature of the bedload transport

    Physical modelling of pressure flushing of sediment using lightweight materials

    Get PDF
    While designing physical hydraulic model tests to investigate the efficiency of pressure flushing, it is most likely that very fine sediments of cohesive nature are required to satisfy the relevant scaling criteria. Cohesive sediments have different physical properties than sand, and a possibility to avoid such scale effects is to use lightweight materials with a specific gravity larger than water but lower than sand as model sediment. This paper addresses this issue by presenting results from laboratory experiments mimicking pressure flushing through a bottom outlet by using different lightweight materials and sand as model sediments. The results consolidate conclusions of previous studies carried out solely with sand and show that lightweight models can be used to predict the length and volume of flushingcones. Empirical relations to predict the length and volume of flushing cones are proposed and validated against a small set of experimental data from a previous study

    Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway

    No full text
    In recent years, advanced methods for measuring riverbank migration have been used to understand the process of river planform evolution. However, the role of the so-called outer secondary cell in the hydraulic pattern in bank erosion remains unclear. For this purpose, a natural river meander with high curvature bends and steep riverbanks was chosen to quantify bank migration by high-resolution terrestrial laser scanning of three patches along two river bends in four time intervals. The first two time intervals were seasonal, from spring to autumn, and with relatively few water level changes, whereas the third and fourth time intervals were short, just before and after single flood peak events. The yielded point clouds were filtered and digital elevation models (DEMs) were created. These DEMs were used to analyze bank retreat, riverbank morphology, and slope gradient changes in order to understand the role of the outer secondary cell in these processes. In addition, it is shown that storm events causing short peaks in river discharge are less important for river migration than longer-lasting medium discharge

    CFD modeling as part of a hybrid modeling case study for a gauging station with challenging hydraulics

    No full text
    Estimates of peak flood discharges are most often based on stage measurements, and the discharge is determined indirectly from the extrapolation of a rating-curve. It is possible to improve the extrapolation of the rating-curve by hydraulic modeling, such as scale or numerical models. In this paper, we discuss a case study for a streamflow gauging station in a mountainous river in Norway. A computational fluid dynamics model is used as part of a hybrid modeling study to study the flow at this gauging station with challenging geometry and flow and derive a reliable rating-curve. The numerical model produces stage-discharge data with comparable accuracy to the scale model. Analysis of the results of the hybrid modeling shows that the original location of stage measurements is not suitable for field measurements or for modeling the rating curve. Based on the modeling, an alternative point of measurement with better flow conditions at high flows is identified. The results and findings highlight the importance of 3-dimensional flow at the site during floods and shows how computational fluid dynamics can be used to provide stage-discharge data for rating curves and provide additional insight in hybrid modeling

    ASSESSING THE SUSPENDED SEDIMENT CONCENTRATION BY MEANS OF ACOUSTIC DOPPLER ECHO PROFILING

    No full text
    To obtain valuable information about rivers and water courses, scientists and engineers often rely on monitoring stations. These monitoring stations allow to measure several quantities that play a role in hydroenvironmental problems. One of these key variables is the suspended sediment concentration (SSC). In this paper the application of an acoustic based method to determine the SSC in a river is presented. This method is founded on the sonar equation and uses the echo information from an Acoustic Doppler Current Profiler (ADCP) to assess the SSC. The results from a monitoring station in the river Devoll in Albania are here presented and the method application is discussed. The advantages and disadvantages are highlighted and directions to improve the method are discussed

    Bedload Velocity and Backscattering Strength from Mobile Sediment Bed: A Laboratory Investigation Comparing Bistatic Versus Monostatic Acoustic Configuration

    No full text
    Despite the many advantages of using active ultrasound sonars, recent studies have shown that the specific acoustic geometry, signal-processing configuration, and complex surface-volume scattering process at the riverbed introduce several uncertainties in bedload estimation. This study presents a comparison of bedload velocity and bottom echo intensity measurements performed by monostatic and bistatic active ultrasound systems. The monostatic configuration is widely applied in the field to measure the apparent velocity at the riverbed with an acoustic current Doppler profiler (ADCP). Two laboratory investigations were conducted in two different hydraulic facilities deploying ADCP Stream Pro, monostatic and bistatic acoustic velocity profilers, manufactured by Ubertone. The bistatic instruments provided more accurate bedload velocity measurements and helped in understanding the acoustic sampling of the monastic systems. The bistatic profiles succeeded in measuring a profile over the active bedload layer, and the monostatic instruments resulted in different bedload velocity estimations depending on the acoustic resolution and sampling. The echo intensity increased in the cells measured within the active bedload layer with respect to the cell measuring the water column above. The cells that sampled the immobile bed surface beneath the bedload layer showed a reduction of the echo intensity compared with the cells above. The acoustic sampling, which combines the measurement volume geometry and internal processing, seems crucial for more accurate outputs. Future research about the use of monostatic instruments in the field should aim to define the best possible setting for the acoustic parameters at a given bedload condition that may be tuned by evaluating the backscattering at the river bottom together with the apparent bedload velocity

    The Story of a Steep River: Causes and Effects of the Flash Flood on 24 July 2017 in Western Norway

    No full text
    Flash floods can cause great geomorphological changes in ephemeral fluvial systems and result in particularly severe damages for the unprepared population exposed to it. The flash flood in the Storelva river in Utvik (western Norway) on 24 July 2017 was witnessed and documented. This study assessed the causes and effects of the 2017 flood and provides valuable information for the calibration and validation of future modelling studies. The flooded area at peak discharge, maximum wetted and dry areas during the entire event, critical points and main flow paths were reconstructed using on-site and post-event (i) visual documentation, such as photographs and videos, and (ii) aerial surveying, such as orthophotographs and laser scanning, of the lowermost reach. The steep longitudinal slope together with the loose material forming the valley and riverbed contributed to a large amount of sediment transport during this extreme event. Steep rivers such as the Storelva river have very short response times to extreme hydrologic conditions, which calls for exhaustive monitoring and data collection in case of future events, as well as modelling tools that can emulate the hydro-morphodynamics observed during events such as the 2017 flash flood

    Development of a method for suspended sediment transport monitoring by means of ADCP measurements

    Get PDF
    Monitoring stations in rivers and water courses are an important mean to obtain critical data about the different variables that play a role in the hydrodynamics and ecological processes. Measuring suspended sediment concentration often requires the displacement of equipment and manpower to the field. This is often expensive and not practical, in particular during severe weather and flow conditions. A method to determine the suspended sediment concentration as a result of ADCP remote measurements is here presented. This method relies on the relationship between the attenuation to backscatter ratio and the normalized attenuation coefficient. To test this method, data from a field monitoring station in Kokel, on the banks of the Devoll river in Albania, is used.publishedVersion© The Authors, published by EDP Sciences, 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/)

    Development of a method for suspended sediment transport monitoring by means of ADCP measurements

    No full text
    Monitoring stations in rivers and water courses are an important mean to obtain critical data about the different variables that play a role in the hydrodynamics and ecological processes. Measuring suspended sediment concentration often requires the displacement of equipment and manpower to the field. This is often expensive and not practical, in particular during severe weather and flow conditions. A method to determine the suspended sediment concentration as a result of ADCP remote measurements is here presented. This method relies on the relationship between the attenuation to backscatter ratio and the normalized attenuation coefficient. To test this method, data from a field monitoring station in Kokel, on the banks of the Devoll river in Albania, is used
    corecore