29 research outputs found

    Research and Development Aspects on Chemical Preparation Techniques of Photoanodes for Dye Sensitized Solar Cells

    Get PDF
    The importance of dye sensitized solar cells (DSSCs) as a low-cost and environmentally friendly photovoltaic (PV) technology has prompted many researchers to improve its efficiency and durability. The realization of these goals is impossible without taking into account the importance of the materials in DSSCs, so the focus on the preparation/deposition methods is essential. These methods can be either chemical or physical. In this study, the chemical applied methods that utilize chemical reaction to synthesize and deposit the materials are covered and categorized according to their gas phase and liquid phase precursors. Film processing techniques that can be used to enhance the materials' properties postpreparation are also included for further evaluation in this study. However, there is a variety of consideration, and certain criteria must be taken into account when selecting a specific deposition method, due to the fact that the fabrication conditions vary and are unoptimized

    Evaluation of solar air collector-thermoelectric hybrid system

    Get PDF
    Solar energy is the most long-lasting, free, clean and renewable energy which cause zero-pollution to the environment. Recently, it has become a popular topic for the scientists to replace the fossil fuels as the primary sources of energy generation. To maximize the usage of solar energy, solar-thermoelectric air hybrid collector system is created and constructed, with size of 0.98m ×0.59m ×0.12m. The purpose of the combination of solar collector and thermoelectric is to collect hot air for drying purpose and generate electricity. The experiment is carried out in a laboratory with the usage of solar simulator, in which the solar intensity is fixed at 700 W/m2. The key factor which manipulating the experiment is the mass flow rate if the air flow through the hybrid system, which is set at 0.0333kg/s, 0.0385kg/s, 0.044kg/s, 0.0495kg/s, 0.055kg/s. The experiment investigation with the effect of different mass flow rate on the overall efficiency of the solar-thermoelectric air collector system is presented

    Adsorption Isotherm of Chromium (VI) into Zncl2 Impregnated Activated Carbon Derived by Jatropha Curcas Seed Hull

    Get PDF
    Hexavalent chromium is carcinogenic and should be removed from industrial wastewater before discharged into water resources. Adsorption by using activated carbon from biomass is an economic and conventional way on removing the heavy metal ions from wastewater. In this research, activated carbon is synthesized from Jatropha curcas L. seed hull through chemical activation with ZnCl2 and carbonized at 800 °C (JAC/ZnCl2). The activated carbon has been characterized using FTIR, SEM-EDX, BET and CHNS-O analyzer. Adsorption isotherms have been analysed using Langmuir and Freundlich models to determine its removal mechanism. The maximum adsorption capacity of Cr (VI) metal ions onto JAC/ZnCl2 activated carbon is 25.189 mg/g and following Langmuir isotherm model which is monolayer adsorption

    Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO

    Get PDF
    This study involves the investigation of altering the photocatalytic activity of TiO2 using composite materials. Three different forms of modified TiO2, namely, TiO2/activated carbon (AC), TiO2/carbon (C), and TiO2/PANi, were compared. The TiO2/carbon composite was obtained by pyrolysis of TiO2/PANi prepared by in situ polymerization method, while the TiO2/activated carbon (TiO2/AC) was obtained after treating TiO2/carbon with 1.0 M KOH solution, followed by calcination at a temperature of 450°C. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TG-DTA), Brunauer-Emmet-Teller (BET), and UV-Vis spectroscopy were used to characterize and evaluate the prepared samples. The specific surface area was determined to be in the following order: TiO2/AC > TiO2/C > TiO2/PANi > TiO2 (179 > 134 > 54 > 9 m2 g−1). The evaluation of photocatalytic performance for the degradation of methylene blue under UV light irradiation was also of the same order, with 98 > 84.7 > 69% conversion rate, which is likely to be attributed to the porosity and synergistic effect in the prepared samples

    Effect of pH on the synthesis of Cuo nanosheets by quick precipitation method

    Get PDF
    In this paper, copper oxide nanosheets were successfully fabricated in polyvinylpyrrolidone (PVP) via a quick precipitation method. The synthesized CuO nanostructures were characterized by X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy, energy dispersive analysis of X-ray, and Fourier transform infrared (FT-IR) spectroscopy. The effect of pH on the final product was investigated. The results show that a higher volume ratio of NaOH results in well-defined CuO nanosheets. XRD results confirmed the formation of pure CuO with a monoclinic structure at higher pH, whereas gerhardtite was formed at lower pH. TEM results indicate that sheet-like CuO were formed at higher pH. FT-IR results show that C=O in PVP coordinated with CuO and formed a protection layer. The generation of CuO nanostructures was proven by UV-vis spectroscopy. The mechanism of the reaction was also discussed

    Synthesis of solar light driven nanorod-zinc oxide for degradation of rhodamine B, industrial effluent and contaminated river water

    Get PDF
    Surface water contamination by various dyes and pigments is a global problem caused by rapid industry, particularly textile/dyeing. Bangladesh's export-oriented textile sector has exploded in recent decades, polluting local waterways significantly. In this study, nano-ZnO were prepared using surfactant-assisted sol–gel, hydrothermal and thermal methods. SEM, XRD, reflectance spectrophotometer, EDS and adsorption tests were used to characterize the synthesized nano-ZnO. BET isotherms were used to determine the surface area, pore volume, and pore size of the as-prepared nano-ZnO. The mixed surfactant assisted-sol gel method produced nanorod-ZnO, whereas the hydrothermal and/or thermal methods yielded clusters of needles ZnO, as proven by SEM images. XRD data revealed that the synthesized nanorod-ZnO had a mainly wurtzite crystalline structure and their size was estimated using the Scherrer equation to be about 23.90 nm. EDS spectra confirmed the synthesis of pure nanorod-ZnO. Using a UV–visible reflectance spectrophotometer, the band gap energy of the as-prepared nanorod-ZnO was found to be 3.35 eV. According to BET isotherms, the BET and Langmuir surface areas were 4 and 5.4 m2/g, respectively. Prior to analyzing photodegradation, the RB was adsorbing in the presence of various doses of the nanorod-ZnO in the dark, but no adsorption was observed. The photocatalytic activities of the synthesized nano-ZnO were compared to TiO2 (anatase) for the degradation of RB in an aqueous system under solar light, UV, fluorescence, and tungsten filament light irradiation. Nanorod-ZnO showed exceptional photocatalytic activity in degrading RB in an aqueous solution under solar light irradiation. The results suggest that 0.01 g/50 mL nanorod-ZnO with a solution pH of 7.8 is the best combination for complete degradation of 2.00 × 10-5 M RB under solar light irradiation. When nano-ZnO was exposed to light, the inhibiting effect of ethanol and/or tert-butanol on the degradation of RB confirmed the formation of mostly hydroxyl free radicals. The synthesized nanorod-ZnO shown substantial photocatalytic activity in the removal of pollutants from industrial effluents and contaminated river water under solar light irradiation. A mechanism of excellent photocatalytic activity of the nanorod-ZnO is discussed

    Microwave-assisted hydrothermal synthesis of sulfonated TiO2-GO core–shell solid spheres as heterogeneous esterification mesoporous catalyst for biodiesel production

    No full text
    In accordance with the need for green production, the aim of current research is to synthesize a highly recyclable mesoporous SO H-GO@TiO catalyst possessing both Brönsted and Lewis acid sites for one-pot catalyzing the esterification of inexpensive acidic feedstocks namely palm fatty acid distillate (PFAD), containing free fatty acids (FFAs, \u3e85 wt%) and a considerable amount of water (3 wt%). The mesoporous sulfonated GO@TiO catalyst was synthesized using a two-step hydrothermal microwave-assisted method featured by uniform dispersion of TiO nanoparticles inside the mesopore framework of GO and post-sulfonation treatment. The effect of different GO:Ti ratios (1:0.1, 1:0.3, 1:0.5, and 1:1) on textural properties were examined and therefore, the ratio of 1:1 was selected as the optimum ratio for further experiments. The mesoporous SO H-GO@TiO catalyst was characterized using Raman spectroscopy, Brunauer–Emmett–Teller (BET), X-Ray diffraction (XRD), temperature-programmed desorption (TPD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX), and the results revealed that the as-developed catalyst possessed desirable textural properties as well as strong acidity with a combination of both Brönsted and Lewis acid sites. Furthermore, the crystalline structure of the as-prepared mesoporous GO@TiO material remains unaltered after the post-sulfonation treatment. In addition, the synthesized mesoporous SO H-GO@TiO catalyst showed high stability for ten consecutive esterification reactions without additional treatments. 3 2 2 2 3 2 2 3

    The Physical and Mechanical Properties of Autoclaved Aerated Concrete (AAC) with Recycled AAC as a Partial Replacement for Sand

    No full text
    The application of AAC has increased considerably in Malaysia since the 1990s. The usage of AAC has some advantages, but it also has negative environmental impacts since rejected concrete will become landfill. This study aimed to use AAC waste powder as a material that would partially replace the sand content to produce a new form of Autoclaved Aerated Concrete (AAC). The physical and mechanical properties of the newly developed AAC were investigated. This paper presents improved mechanical and physical properties of the new form of recycled AAC concrete. Besides these improvements, using recycled AAC could lower production costs. Furthermore, the usage of this recycled waste powder is both economically and environmentally advantageous. This study found that when recycled AAC was substituted for sand, AAC with a fine recycled powder content of 30% had a compressive strength that was around 16% higher than conventional AAC and between 29% and 156% higher than any value attained utilizing an industrial waste product. This study also confirmed that the greater strength could be identical to a higher tobermorite phase and that the recycled AAC surface showed a finer crystalline morphology
    corecore