61 research outputs found

    Pluripotency of Stem Cells from Human Exfoliated Deciduous Teeth for Tissue Engineering

    Get PDF
    Stem cells from human exfoliated deciduous teeth (SHED) are highly proliferative pluripotent cells that can be retrieved from primary teeth. Although SHED are isolated from the dental pulp, their differentiation potential is not limited to odontoblasts only. In fact, SHED can differentiate into several cell types including neurons, osteoblasts, adipocytes, and endothelial cells. The high plasticity makes SHED an interesting stem cell model for research in several biomedical areas. This review will discuss key findings about the characterization and differentiation of SHED into odontoblasts, neurons, and hormone secreting cells (e.g., hepatocytes and islet-like cell aggregates). The outcomes of the studies presented here support the multipotency of SHED and their potential to be used for tissue engineering-based therapies

    Bioactivity, physical and chemical properties of MTA mixed with propylene glycol

    Get PDF
    AbstractObjective To investigate the physical (setting time, hardness, flowability, microstructure) and chemical (pH change, calcium release, crystallinity) properties and the biological outcomes (cell survival and differentiation) of mineral trioxide aggregate (MTA) mixed using different proportions of propylene glycol (PG) and water.Material and Methods White MTA was mixed with different water/PG ratios (100/0, 80/20 and 50/50). Composition (XRD), microstructure (SEM), setting time (ASTM C266-13), flowability (ANSI/ADA 57-2000), Knoop hardness (100 g/10 s) and chemical characteristics (pH change and Ca2+ release for 7 days) were evaluated. Cell proliferation, osteo/odontoblastic gene expression and mineralization induced by MTA mixed with PG were evaluated. MTA discs (5 mm in diameter, 2 mm thick) were prepared and soaked in culture medium for 7 days. Next, the discs were removed and the medium used to culture dental pulp stem cells (DPSC) for 28 days. Cells survival was evaluated using MTS assay (24, 72 and 120 h) and differentiation with RT-PCR (ALP, OCN, Runx2, DSPP and MEPE) and alizarin red staining (7 and 14 days). Data were analysed using one-way ANOVA and Tukey’s post-hoc analysis (a=0.05).Results The addition of PG significantly increased setting time, flowability and Ca2+ release, but it compromised the hardness of the material. SEM showed that 50/50 group resulted porous material after setting due to the incomplete setting reaction, as shown by XRD analysis. The addition of PG (80/20 and 50/50) was not capable to improve cell proliferation or to enhance gene expression, and mineralized deposition of DPSC after 7 and 14 days as compared to the 100/0.Conclusion Except for flowability, the addition of PG did not promote further improvements on the chemical and physical properties evaluated, and it was not capable of enhancing the bioactivity of the MTA

    Guidance on the assessment of biocompatibility of biomaterials: Fundamentals and testing considerations.

    Get PDF
    BACKGROUND Assessing the biocompatibility of materials is crucial for ensuring the safety and well-being of patients by preventing undesirable, toxic, immune, or allergic reactions, and ensuring that materials remain functional over time without triggering adverse reactions. To ensure a comprehensive assessment, planning tests that carefully consider the intended application and potential exposure scenarios for selecting relevant assays, cell types, and testing parameters is essential. Moreover, characterizing the composition and properties of biomaterials allows for a more accurate understanding of test outcomes and the identification of factors contributing to cytotoxicity. Precise reporting of methodology and results facilitates research reproducibility and understanding of the findings by the scientific community, regulatory agencies, healthcare providers, and the general public. AIMS This article aims to provide an overview of the key concepts associated with evaluating the biocompatibility of biomaterials while also offering practical guidance on cellular principles, testing methodologies, and biological assays that can support in the planning, execution, and reporting of biocompatibility testing

    Additive Manufactured Zirconia-Based Bio-Ceramics for Biomedical Applications

    Get PDF
    Zirconia was established as one of the chief vital ceramic materials for its superior mechanical permanency and biocompatibility, which make it a popular material for dental and orthopedic applications. This has inspired biomedical engineers to exploit zirconia-based bioceramics for dental restorations and repair of load-bearing bone defects caused by cancer, arthritis, and trauma. Additive manufacturing (AM) is being promoted as a possible technique for mimicking the complex architecture of human tissues, and advancements reported in the recent past make it a suitable choice for clinical applications. AM is a bottom-up approach that can offer a high resolution to 3D printed zirconia-based bioceramics for implants, prostheses, and scaffold manufacturing. Substantial research has been initiated worldwide on a large scale for reformatting and optimizing zirconia bioceramics for biomedical applications to maximize the clinical potential of AM. This book chapter provides a comprehensive summary of zirconia-based bioceramics using AM techniques for biomedical applications and highlights the challenges related to AM of zirconia

    Bioactivity, physical and chemical properties of MTA mixed with propylene glycol

    Get PDF
    AbstractObjective To investigate the physical (setting time, hardness, flowability, microstructure) and chemical (pH change, calcium release, crystallinity) properties and the biological outcomes (cell survival and differentiation) of mineral trioxide aggregate (MTA) mixed using different proportions of propylene glycol (PG) and water.Material and Methods White MTA was mixed with different water/PG ratios (100/0, 80/20 and 50/50). Composition (XRD), microstructure (SEM), setting time (ASTM C266-13), flowability (ANSI/ADA 57-2000), Knoop hardness (100 g/10 s) and chemical characteristics (pH change and Ca2+ release for 7 days) were evaluated. Cell proliferation, osteo/odontoblastic gene expression and mineralization induced by MTA mixed with PG were evaluated. MTA discs (5 mm in diameter, 2 mm thick) were prepared and soaked in culture medium for 7 days. Next, the discs were removed and the medium used to culture dental pulp stem cells (DPSC) for 28 days. Cells survival was evaluated using MTS assay (24, 72 and 120 h) and differentiation with RT-PCR (ALP, OCN, Runx2, DSPP and MEPE) and alizarin red staining (7 and 14 days). Data were analysed using one-way ANOVA and Tukey’s post-hoc analysis (a=0.05).Results The addition of PG significantly increased setting time, flowability and Ca2+ release, but it compromised the hardness of the material. SEM showed that 50/50 group resulted porous material after setting due to the incomplete setting reaction, as shown by XRD analysis. The addition of PG (80/20 and 50/50) was not capable to improve cell proliferation or to enhance gene expression, and mineralized deposition of DPSC after 7 and 14 days as compared to the 100/0.Conclusion Except for flowability, the addition of PG did not promote further improvements on the chemical and physical properties evaluated, and it was not capable of enhancing the bioactivity of the MTA

    Applications of Polymeric Micro- and Nano-Particles in Dentistry

    Full text link
    The use of micro- and nanoparticles is rapidly advancing and has been most commonly used in medical and biological research that offers an encouraging scope in broad range of disciplines. Manipulation of the biomaterials to their micro- and nano-scale renders their properties and behavior different from that of the same material in the mass scale and make them more reactive than large particles. The removal of tooth structure and its restoration with synthetic material to solve the problems caused by dental caries, trauma and fracture is a practice nearly as old as dentistry. Efforts are made to create micro- and nanomaterials that can revolutionize these ancestral therapies and dental procedures. The use of these materials had shown some promising applications in caries control, endodontic therapy, regenerative dentistry, periodontology and oral biofilm management. This review aims to discuss the recent advances and future potential of polymer-based micro- and nanoparticles in dentistry.</jats:p

    Applications of Polymeric Micro- and Nano-Particles in Dentistry

    Full text link
    The use of micro- and nanoparticles is rapidly advancing and has been most commonly used in medical and biological research that offers an encouraging scope in broad range of disciplines. Manipulation of the biomaterials to their micro- and nano-scale renders their properties and behavior different from that of the same material in the mass scale and make them more reactive than large particles. The removal of tooth structure and its restoration with synthetic material to solve the problems caused by dental caries, trauma and fracture is a practice nearly as old as dentistry. Efforts are made to create micro- and nanomaterials that can revolutionize these ancestral therapies and dental procedures. The use of these materials had shown some promising applications in caries control, endodontic therapy, regenerative dentistry, periodontology and oral biofilm management. This review aims to discuss the recent advances and future potential of polymer-based micro- and nanoparticles in dentistry.</jats:p
    corecore