119 research outputs found

    Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells

    Get PDF
    Journal article (open access)Background: The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy.Results: Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs.Conclusion: The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).Science Foundation Irelandpeer-reviewe

    MicrobesOnline: an integrated portal for comparative and functional genomics

    Get PDF
    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.United States. Dept. of Energy (Genomics: GTL program (grant DE-AC02-05CH11231)

    Collaborative annotation of genes and proteins between UniProtKB/Swiss-Prot and dictyBase

    Get PDF
    UniProtKB/Swiss-Prot, a curated protein database, and dictyBase, the Model Organism Database for Dictyostelium discoideum, have established a collaboration to improve data sharing. One of the major steps in this effort was the ‘Dicty annotation marathon’, a week-long exercise with 30 annotators aimed at achieving a major increase in the number of D. discoideum proteins represented in UniProtKB/Swiss-Prot. The marathon led to the annotation of over 1000 D. discoideum proteins in UniProtKB/Swiss-Prot. Concomitantly, there were a large number of updates in dictyBase concerning gene symbols, protein names and gene models. This exercise demonstrates how UniProtKB/Swiss-Prot can work in very close cooperation with model organism databases and how the annotation of proteins can be accelerated through those collaborations

    A comprehensive functional analysis of tissue specificity of human gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues.</p> <p>Results</p> <p>We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases.</p> <p>Conclusion</p> <p>A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.</p

    InterPro, progress and status in 2005

    Get PDF
    InterPro, an integrated documentation resource of protein families, domains and functional sites, was created to integrate the major protein signature databases. Currently, it includes PROSITE, Pfam, PRINTS, ProDom, SMART, TIGRFAMs, PIRSF and SUPERFAMILY. Signatures are manually integrated into InterPro entries that are curated to provide biological and functional information. Annotation is provided in an abstract, Gene Ontology mapping and links to specialized databases. New features of InterPro include extended protein match views, taxonomic range information and protein 3D structure data. One of the new match views is the InterPro Domain Architecture view, which shows the domain composition of protein matches. Two new entry types were introduced to better describe InterPro entries: these are active site and binding site. PIRSF and the structure-based SUPERFAMILY are the latest member databases to join InterPro, and CATH and PANTHER are soon to be integrated. InterPro release 8.0 contains 11 007 entries, representing 2573 domains, 8166 families, 201 repeats, 26 active sites, 21 binding sites and 20 post-translational modification sites. InterPro covers over 78% of all proteins in the Swiss-Prot and TrEMBL components of UniProt. The database is available for text- and sequence-based searches via a webserver (http://www.ebi.ac.uk/interpro), and for download by anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro)

    New developments in the InterPro database

    Get PDF
    InterPro is an integrated resource for protein families, domains and functional sites, which integrates the following protein signature databases: PROSITE, PRINTS, ProDom, Pfam, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D and PANTHER. The latter two new member databases have been integrated since the last publication in this journal. There have been several new developments in InterPro, including an additional reading field, new database links, extensions to the web interface and additional match XML files. InterPro has always provided matches to UniProtKB proteins on the website and in the match XML file on the FTP site. Additional matches to proteins in UniParc (UniProt archive) are now available for download in the new match XML files only. The latest InterPro release (13.0) contains more than 13 000 entries, covering over 78% of all proteins in UniProtKB. The database is available for text- and sequence-based searches via a webserver (), and for download by anonymous FTP (). The InterProScan search tool is now also available via a web service at
    corecore