5 research outputs found

    Host-Guest Complexes

    Get PDF
    Supramolekulska kemija definirana je kao ā€žkemija molekularnih sustava i intermolekulskih vezaā€œ ili jednostavnije kao ā€žkemija iznad molekuleā€œ. Ona je "mlada" znanstvena disciplina koja se počela značajnije razvijati krajem 1960-ih i početkom 1970-ih godina proÅ”log stoljeća. Supramolekulska kemija je multidisciplinarno područje sa srediÅ”tem proučavanja međumolekulske interakcije i supramolekulskih agregata čija je gradivna jedinica molekula ili molekulska vrsta. Supramolekulski agregat je vrsta koju na okupu drže nekovalentne interakcije između dva ili viÅ”e kovalentno povezanih molekula ili iona. Može se podijeliti u dvije Å”iroke kategorije: domaćin-gost kemija i molekulsko samoudruživanje ili samorganizacija. U ovom radu detaljnije će se opisati domaćin-gost kemija i pripadajući spojevi. Domaćin je najčeŔće molekula koja posjeduje konvergentnu centralnu Å”upljinu određene veličine. Gost može biti kation, jednostavni anorganski anion, ionski par ili sofisticiranija molekula poput hormona, feromona ili neurotransmitera koji posjeduje divergentno vezujuće mjesto. Domaćin-gost kompleksi kreću se od vrlo jednostavnih (klorov hidrat, metanski klatrat) do puno složenijih (ciklodekstrin, zeoliti, metal-organske mreže) struktura koje objedinjuju organsku i anorgansku kemiju zajedno s biokemijom, nanotehnologijom i kemijskim inžinjerstvom. Supramolekulska kemija, a samim time i domaćin-gost kemija, razvija se ubrzano tijekom ovih 30 i viÅ”e godina. Danas je karakterizira Å”irok raspon i raznolikost spojeva koji su primjenjivi u biokemijskim, farmaceutskim, ekoloÅ”kim, kozmetičkim, prehrambenim i mnogim drugim industrijama te ima joÅ” puno prostora za napredak.Supramolecular chemistry is defined as the ā€œchemistry of molecular systems and intermolecular connectionsā€ or simply as ā€œchemistry above the moleculeā€. It is a "young" scientific discipline that began to develop significantly in the late 1960s and early 1970s. Supramolecular chemistry is a multidisciplinary field with the focus on intermolecular interactions and supramolecular aggregates whose building blocks are molecules. The supramolecular aggregate is a compound which is held by non-covalent interactions between the two or more covalently linked molecules or ions. It can be divided into two broad categories: host-guest chemistry and self-assembly or molecular self-organization. In this paper more detailed description will be given of host-guest chemistry and related compounds. The host is most often a molecule possessing a convergent centered cavity of a certain size. A guest can be a cation, a simple inorganic anion, an ion pair, or a sophisticated molecule such as a hormone, a pheromone or a neurotransmitter possessing a divergent binding site. The host-guest complexes range from very simple (chlorine hydrate, methane clathrate) to much more complex (cyclodextrin, zeolites, metal-organic framework) structures that combine organic and inorganic chemistry together with biochemistry, nanotechnology and chemical engineering. Supramolecular chemistry, and therefore the host-guest chemistry, is developing rapidly over these 30 years and over. Today, it is characterized by a wide range and variety of compounds that are applicable in biochemical, pharmaceutical, ecological, cosmetic, nutritional and many other industries and there is still plenty of room for improvement

    Host-Guest Complexes

    No full text
    Supramolekulska kemija definirana je kao ā€žkemija molekularnih sustava i intermolekulskih vezaā€œ ili jednostavnije kao ā€žkemija iznad molekuleā€œ. Ona je "mlada" znanstvena disciplina koja se počela značajnije razvijati krajem 1960-ih i početkom 1970-ih godina proÅ”log stoljeća. Supramolekulska kemija je multidisciplinarno područje sa srediÅ”tem proučavanja međumolekulske interakcije i supramolekulskih agregata čija je gradivna jedinica molekula ili molekulska vrsta. Supramolekulski agregat je vrsta koju na okupu drže nekovalentne interakcije između dva ili viÅ”e kovalentno povezanih molekula ili iona. Može se podijeliti u dvije Å”iroke kategorije: domaćin-gost kemija i molekulsko samoudruživanje ili samorganizacija. U ovom radu detaljnije će se opisati domaćin-gost kemija i pripadajući spojevi. Domaćin je najčeŔće molekula koja posjeduje konvergentnu centralnu Å”upljinu određene veličine. Gost može biti kation, jednostavni anorganski anion, ionski par ili sofisticiranija molekula poput hormona, feromona ili neurotransmitera koji posjeduje divergentno vezujuće mjesto. Domaćin-gost kompleksi kreću se od vrlo jednostavnih (klorov hidrat, metanski klatrat) do puno složenijih (ciklodekstrin, zeoliti, metal-organske mreže) struktura koje objedinjuju organsku i anorgansku kemiju zajedno s biokemijom, nanotehnologijom i kemijskim inžinjerstvom. Supramolekulska kemija, a samim time i domaćin-gost kemija, razvija se ubrzano tijekom ovih 30 i viÅ”e godina. Danas je karakterizira Å”irok raspon i raznolikost spojeva koji su primjenjivi u biokemijskim, farmaceutskim, ekoloÅ”kim, kozmetičkim, prehrambenim i mnogim drugim industrijama te ima joÅ” puno prostora za napredak.Supramolecular chemistry is defined as the ā€œchemistry of molecular systems and intermolecular connectionsā€ or simply as ā€œchemistry above the moleculeā€. It is a "young" scientific discipline that began to develop significantly in the late 1960s and early 1970s. Supramolecular chemistry is a multidisciplinary field with the focus on intermolecular interactions and supramolecular aggregates whose building blocks are molecules. The supramolecular aggregate is a compound which is held by non-covalent interactions between the two or more covalently linked molecules or ions. It can be divided into two broad categories: host-guest chemistry and self-assembly or molecular self-organization. In this paper more detailed description will be given of host-guest chemistry and related compounds. The host is most often a molecule possessing a convergent centered cavity of a certain size. A guest can be a cation, a simple inorganic anion, an ion pair, or a sophisticated molecule such as a hormone, a pheromone or a neurotransmitter possessing a divergent binding site. The host-guest complexes range from very simple (chlorine hydrate, methane clathrate) to much more complex (cyclodextrin, zeolites, metal-organic framework) structures that combine organic and inorganic chemistry together with biochemistry, nanotechnology and chemical engineering. Supramolecular chemistry, and therefore the host-guest chemistry, is developing rapidly over these 30 years and over. Today, it is characterized by a wide range and variety of compounds that are applicable in biochemical, pharmaceutical, ecological, cosmetic, nutritional and many other industries and there is still plenty of room for improvement

    Synthesis and biological activity of imidazolium salts

    No full text
    Poznata je Å”iroka primjena kvaternih amonijevih soli imidazola pa tako i njihova antibakterijska i antifungalna svojstva. Provedene su jednostavne reakcije kvaternizacije imidazola, 1-vinilimidazola i 4-metilimidazola s alkil-halogenidom pri čemu je alkilni lanac (R) varirao između 12 i 20 ugljikovih atoma, a za halogenid (X) je uzet bromid ili jodid. Reakcije su se odvijale u bazičnim uvjetima uz acetonitril kao otapalo, u zatvorenoj inertnoj atmosferi duÅ”ika pri 100Ā°C ili na sobnoj temperaturi. UspjeÅ”no je sintetizirano deset kvaternih amonijevih soli imidazola. Dobiveni spojevi su izolirani i karakterizirani infracrvenom spektroskopijom (IR) te masenom spektrometrijom (MS). Potencijalna antibakterijska svojstva sintetiziranih spojeva nisu ispitivana u ovome radu.Widespread use of quaternary ammonium salts of imidazole is known, as well as their antibacterial and antifungal properties. Simple quaternization reactions of imidazole, 1-vinylimidazole and 4-methylimidazole with alkyl halide were carried out with the alkyl chain (R) varying between 12 and 20 carbon atoms and the bromide or iodide taken as the halide (X). The reactions were performed under basic conditions with acetonitrile as solvent, under a closed inert nitrogen atmosphere at 100Ā° C or at room temperature. Ten quaternary ammonium salts of imidazole have been successfully synthesized. The obtained compounds were isolated and characterized by infrared spectroscopy and mass spectrometry. The potential antibacterial properties of the synthesized compounds have not been investigated in this paper

    Synthesis and biological activity of imidazolium salts

    No full text
    Poznata je Å”iroka primjena kvaternih amonijevih soli imidazola pa tako i njihova antibakterijska i antifungalna svojstva. Provedene su jednostavne reakcije kvaternizacije imidazola, 1-vinilimidazola i 4-metilimidazola s alkil-halogenidom pri čemu je alkilni lanac (R) varirao između 12 i 20 ugljikovih atoma, a za halogenid (X) je uzet bromid ili jodid. Reakcije su se odvijale u bazičnim uvjetima uz acetonitril kao otapalo, u zatvorenoj inertnoj atmosferi duÅ”ika pri 100Ā°C ili na sobnoj temperaturi. UspjeÅ”no je sintetizirano deset kvaternih amonijevih soli imidazola. Dobiveni spojevi su izolirani i karakterizirani infracrvenom spektroskopijom (IR) te masenom spektrometrijom (MS). Potencijalna antibakterijska svojstva sintetiziranih spojeva nisu ispitivana u ovome radu.Widespread use of quaternary ammonium salts of imidazole is known, as well as their antibacterial and antifungal properties. Simple quaternization reactions of imidazole, 1-vinylimidazole and 4-methylimidazole with alkyl halide were carried out with the alkyl chain (R) varying between 12 and 20 carbon atoms and the bromide or iodide taken as the halide (X). The reactions were performed under basic conditions with acetonitrile as solvent, under a closed inert nitrogen atmosphere at 100Ā° C or at room temperature. Ten quaternary ammonium salts of imidazole have been successfully synthesized. The obtained compounds were isolated and characterized by infrared spectroscopy and mass spectrometry. The potential antibacterial properties of the synthesized compounds have not been investigated in this paper

    The 1,3-Dioctadecyl-1<i>H</i>-imidazol-3-ium Based Potentiometric Surfactant Sensor for Detecting Cationic Surfactants in Commercial Products

    No full text
    A low-cost and fast potentiometric surfactant sensor for cationic surfactants, based on the new ion-pair 1,3-dioctadecyl-1H-imidazol-3-ium-tetraphenylborate (DODI-TPB), is presented. The new cationic surfactant DODI-Br was synthesized and characterized by NMR, LC-MS, and elemental analysis, and was used for synthesis of the DODI-TPB ionophore. The DODI-TPB surfactant sensor was obtained by implementation of the ionophore in PVC. The sensor showed excellent response characteristics with near-Nernstian slopes to the cationic surfactants DMIC, CPC, CTAB, and Hyamine 1622. The highest voltage responses were obtained for DMIC and CPC (58.7 mV/decade of activity). DMIC had the lowest detection limit (0.9 Ɨ 10āˆ’6 M) and the broadest useful linear concentration range (1.8 Ɨ 10āˆ’6 to 1.0 Ɨ 10āˆ’4 M). An interference study showed remarkable stability. Potentiometric titration curves for the titration of cationic surfactants (DMIC, CPC, CTAB, and Hyamine 1622), with DDS and TPB used as titrants, showed sigmoidal curves with well-defined inflexion points and a broad signal change. The standard addition method was successfully applied with recovery rates from 98.9 to 101.2 at two concentrations. The amount of cationic surfactant found in disinfectants and antiseptics was in good agreement with the referent two-phase titration method and the surfactant sensor on the market. This new surfactant sensor represents a low-cost alternative to existing methods for cationic surfactant detection
    corecore