267 research outputs found

    Modeling of thermoelectric module operation in inhomogeneous transient temperature field using finite element method

    Get PDF
    This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathe-matical model can be used successfully for modeling of cooling of cutting tools

    Climate change modifies carbon sequestration in copper-polluted forest soils

    Get PDF
    Soil carbon (C) storage is a key ecosystem function which can provide globally important services such as climate regulation. The effect of climate change on the restoration of soil C storage potential on post-mining land, where the development of both soil and vegetation starts de novo, is still insufficiently understood. In this work we discuss how the recent changes of climate, effectuating temperature increase and overall habitat xerophytization have, during about 40 years, markedy modified the course of spontaneous succession and concomitantly the soil C sequestration potental in a model floodplain severely altered by long-term deposition of sulphidic waste from a copper (Cu) mine. Excessive Cu strongly reduces turnover of soil organic matter and adversely affects the revegetation process. Natural floods in this complex geomorphic setup on the other hand bring both pollutants and deficient nutrients to the affected floodplain. As the recent climate changes reduce the intensity of natural floods, two very different but highly specialized forest types are developing along the microelevation gradient (transects perpendicular to water channel) with up to 3-fold different topsoil C sequestration. This work shows how climate change can increase the vunerability of spontaneous restoration process primarily by reducing nutrient fluxes

    Non-linear transient heat conduction analysis of insulation wall of tank for transportation of liquid aluminum

    Get PDF
    This paper deals with transient non-linear heat conduction through the insulation wall of the tank for transportation of liquid aluminum. Tanks designed for this purpose must satisfy certain requirements regarding temperature of loading and unloading, duringtransport. Basic theoretical equations are presented, which describe the problem of heat conduction finite element analysis, starting from the differential equation of energy balance, taking into account the initial and boundary conditions of the problem. General 3-D problem for heat conduction is considered, from which solutions for two- and one-dimensional heat conduction can be obtained, as special cases. Forming of the finite element matrices using Galerkin method is briefly described. The procedure for solving equations of energy balance is discussed, by methods of resolving iterative processes of non-linear transient heat conduction. Solution of this problem illustrates possibilities of PAK-T software package, such as materials properties, given as tabular data, or analytical functions. Software alsooffers the possibility to solve non-linear and transient problems with incremental methods. Obtained results for different thicknesses of the tank wall insulation materials enable its comparison in regards to given conditions

    The Effects of Aggressive Environments on the Properties of Fly Ash based Geopolymers

    Get PDF
    This paper analyzes the effects of two different aggressive environments, concentrated ammonium nitrate solution (480 g/dm(3)) and sodium sulphate solution (50 g/dm(3)), on the structure and mechanical strength of fly ash based geopolymers. Geopolymer samples were subjected to the aggressive solutions over a period of 365 days. It was found that exposure to the NH4NO3 and Na2SO4 solutions caused small decrease in geopolymer strength (10-20 %). The most valuable insight into the structural changes caused by testing of the geopolymer samples in the aggressive solutions was provided by means of Si-29 MAS NMR. It was found that the immersion of geopolymer samples in the NH4NO3 solution caused breaking of Si-O-Al bonds in the aluminosilicate geopolymer gel structure. On the other hand, treatment of the geopolymer samples with the Na2SO4 solution resulted in breaking of Si-O-Si bonds in geopolymer gel structure and leaching of Si. It was concluded that the major changes in the geopolymer structure were associated with the changes in the pH values of aggressive solutions during the testing

    Olanzapine-focus on the cardiometabolic side effects

    Get PDF
    In this article, we review the recent findings concerning weight gain, diabetes mellitus (DM), hyperlipidemia, cardiovascular side effects in patients receiving olanzapine. It will consider the OLZ is associated with an increase in metabolic syndrome or cardiovascular events, and knowledge of these risks is crucial for further monitoring of patients with OLZ-treatment. Although it is one of the most commonly prescribed and effective AATPs, olanzapine causes the most weight gain and metabolic impairments in humans. As not-ed with glucose abnormalities and antipsychotics, olanzap-ine has the greatest propensity for causing proatherogenic hyperlipidemia. The mechanism of dyslipidemia with OLZ is poorly understood, but OLZ has been shown to increase lipogenesis, reduce lipolysis, and enhance the antilipolytic effects of insulin in adipocytes. Olanzapine can induce car-diomyopathy in selected patients. Taken together, all mentioned data indicate that interventions aimed at the amelioration of obesity and cardiovascular illness need to be as multipronged and complex as the contrib-uting psychosocial, behavioural, and biological factors that make obesity and cardiovascular illness more likely in patients with severe mental illness, including schizophrenia

    Silicon increases iron use efficiency in cucumber – a strategy 1 model plant

    Get PDF
    Silicon (Si) and iron (Fe) are respectively the second and the fourth most abundant minerals in the earth’s crust. While the essentiality of Fe has been discovered in the middle of the 19th century, Si is still not fully accepted as an essential element for higher plants. Due to poor Fe availability for higher plants, especially in alkaline and calcareous soils, Fe deficiency represents a major limiting factor for crop production worldwide, affecting both crop yield and quality, with a strong negative impact on human health. Here we investigated the key physiological, biochemical and molecular parameters involved in the processes of root acquisition and tissue utilization of Fe by cucumber (Cucumis sativus L.), as both Strategy 1 model and Si-accumulating species. Silicon nutrition increased the accumulation of apoplastic Fe and Fe-mobilizing compounds in roots, as well as upregulated the expression of genes (AHA1, FRO2, IRT1) encoding the main components of the reduction-based Fe uptake machinery (Pavlovic et al., 2013). In leaves, Si affected relative Fe distribution by enhancing Fe remobilization from old leaves via increased NA accumulation and expression of the YSL1, which stimulated Fe chelation and its retranslocation to younger leaves (Pavlovic et al., 2016). This for the first time demonstrated a new beneficial role of Si, i.e. in increasing nutrient acquisition, transport and utilization by crops. References: Pavlovic J., Samardzic J., Kostic L., Laursen K.H., Natic M., Timotijevic G., Schjoerring J.K., Nikolic M. (2016): Ann. Bot. 118, 271-280. Pavlovic J., Samardzic J., MaksimoviΔ‡ V., Timotijevic G., Stevic N., Laursen K.H., Hansen T.H., Husted S., Schjoerring J.K., Liang Y., Nikolic M. (2013): New Phytol. 198, 1096-1107

    A novel framework for fluid/structure interaction in rapid subjectspecific simulations of blood flow in coronary artery bifurcations

    Get PDF
    Background/Aim. Practical difficulties, particularly long model development time, have limited the types and applicability of computational fluid dynamics simulations in numerical modeling of blood flow in serial manner. In these simulations, the most revealing flow parameters are the endothelial shear stress distribution and oscillatory shear index. The aim of this study was analyze their role in the diagnosis of the occurrence and prognosis of plaque development in coronary artery bifurcations. Methods. We developed a novel modeling technique for rapid cardiovascular hemodynamic simulations taking into account interactions between fluid domain (blood) and solid domain (artery wall). Two numerical models that represent the observed subdomains of an arbitrary patient-specific coronary artery bifurcation were created using multi-slice computed tomography (MSCT) coronagraphy and ultrasound measurements of blood velocity. Coronary flow using an in-house finite element solver PAK-FS was solved. Results. Overall behavior of coronary artery bifurcation during one cardiac cycle is described by: velocity, pressure, endothelial shear stress, oscillatory shear index, stress in arterial wall and nodal displacements. The places where (a) endothelial shear stress is less than 1.5, and (b) oscillatory shear index is very small (close or equal to 0) are prone to plaque genesis. Conclusion. Finite element simulation of fluid-structure interaction was used to investigate patient-specific flow dynamics and wall mechanics at coronary artery bifurcations. Simulation model revealed that lateral walls of the main branch and lateral walls distal to the carina are exposed to low endothelial shear stress which is a predilection site for development of atherosclerosis. This conclusion is confirmed by the low values of oscillatory shear index in those places

    Establishment and in-house validation of stem-loop rt pcr method for microrna398 expression analysis

    Get PDF
    MicroRNAs (miRNAs) belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by "stem-loop" primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for "stem loop" primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as "stem loop" RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs

    Silicon and Iron Differently Alleviate Copper Toxicity in Cucumber Leaves

    Get PDF
    Copper (Cu) toxicity in plants may lead to iron (Fe), zinc (Zn) and manganese (Mn) deficiencies. Here, we investigated the effect of Si and Fe supply on the concentrations of micronutrients and metal-chelating amino acids nicotianamine (NA) and histidine (His) in leaves of cucumber plants exposed to Cu in excess. Cucumber (Cucumis sativus L.) was treated with 10 mu M Cu, and additional 100 mu M Fe or/and 1.5 mM Si for five days. High Cu and decreased Zn, Fe and Mn concentrations were found in Cu treatment. Additional Fe supply had a more pronounced effect in decreasing Cu accumulation and improving the molar ratio between micronutrients as compared to the Si supply. However, the simultaneous supply of Fe and Si was the most effective treatment in alleviation of Cu-induced deficiency of Fe, Zn and Mn. Additional Fe supply increased the His but not NA concentration, while Si supply significantly increased both NA and His whereby the NA:Cu and His:Cu molar ratios exceeded the control values indicating that Si recruits Cu-chelation to achieve Cu tolerance. In conclusion, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while Fe-alleviative effect was due to a dramatic decrease in Cu accumulation

    Π›Π΅ΠΊΠΎΠ²ΠΈΡ‚ΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Π±ΠΈΡ™Π°ΠΊΠ° којС Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ

    Get PDF
    Π‘ΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ (Si) јС Ρ‡Π΅Ρ‚Π²ΠΎΡ€ΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΈ ΠΌΠ΅Ρ‚Π°Π»ΠΎΠΈΠ΄ који Π·Π±ΠΎΠ³ ΡΠ²ΠΎΡ˜ΠΈΡ… ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΡ‡ΠΊΠΈΡ… ΡΠ²ΠΎΡ˜ΡΡ‚Π°Π²Π° ΠΈΠΌΠ° Π²Π°ΠΆΠ½Ρƒ ΡƒΠ»ΠΎΠ³Ρƒ Ρƒ ΠΌΠΎΠ΄Π΅Ρ€Π½ΠΈΠΌ СлСктронским ΡƒΡ€Π΅Ρ’Π°Ρ˜ΠΈΠΌΠ°. Π‘ΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ јС Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌ мСсту ΠΏΠΎ заступљСности Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚Π° Ρƒ Π·Π΅ΠΌΡ™ΠΈΠ½ΠΎΡ˜ ΠΊΠΎΡ€ΠΈ, Π°Π»ΠΈ јС њСгово ΠΊΡ€ΡƒΠΆΠ΅ΡšΠ΅ Ρƒ ΠΏΡ€ΠΈΡ€ΠΎΠ΄ΠΈ Π²Π΅ΠΎΠΌΠ° споро. Овај Ρ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΈ Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚ јС Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π°Π½ Π·Π° Ρ™ΡƒΠ΄Π΅, ΠΆΠΈΠ²ΠΎΡ‚ΠΈΡšΠ΅ ΠΈ Π½Π΅ΠΊΠ΅ Π°Π»Π³Π΅, ΠΏΠΎΠΏΡƒΡ‚ Π΄ΠΈΡ˜Π°Ρ‚ΠΎΠΌΠ΅Ρ˜Π°. Иако појСдинС Π±ΠΈΡ™Π½Π΅ врстС Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ Ρƒ ΠΊΠΎΠ»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠ° Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Π²Π΅Ρ›ΠΈΠΌ ΠΎΠ΄ Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚Π° (Ρ…Ρ€Π°Π½ΠΈΠ²Π°) ΠΏΠΎΠΏΡƒΡ‚ Π°Π·ΠΎΡ‚Π°, фосфора ΠΈΠ»ΠΈ ΠΊΠ°Π»ΠΈΡ˜ΡƒΠΌΠ°, овај ΠΏΠΎ ΠΌΠ½ΠΎΠ³ΠΎ Ρ‡Π΅ΠΌΡƒ посСбан ΠΈ користан Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚ још ΡƒΠ²Π΅ΠΊ нијС сврстан Ρƒ Π³Ρ€ΡƒΠΏΡƒ Π±ΠΈΡ™Π½ΠΈΡ… Ρ…Ρ€Π°Π½ΠΈΠ²Π°. Код ΠΊΠΎΠΏΠ½Π΅Π½ΠΈΡ… Π±ΠΈΡ™Π°ΠΊΠ° (Embryophyta), ΠΏΠΎΡΡ‚ΠΎΡ˜ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° заступљСност ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Ρƒ Ρ‚ΠΊΠΈΠ²ΠΈΠΌΠ°. ΠœΠ°Ρ…ΠΎΠ²ΠΈΠ½Π΅ (Bryophyta) ΠΈ ΠΏΠ°ΠΏΡ€Π°Ρ‚ΡšΠ°Ρ‡Π΅ (Pteridophyta) Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ Ρƒ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΈ ΠΏΡ€Π΅ΠΊΠΎ 5% сувС масС. Код скривСносСмСница (Angiospermae), ΠΌΠΎΠ½ΠΎΠΊΠΎΡ‚ΠΈΠ»Π΅ (Liliopsida), ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ, Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ Π²Π΅Ρ›Π΅ ΠΊΠΎΠ»ΠΈΡ‡ΠΈΠ½Π΅ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° (0,5-5% сувС масС), посСбно Ρ‚Ρ€Π°Π²Π΅ (Poales) ΠΈ ΠΎΡˆΡ‚Ρ€ΠΈΠΊΠ΅ (Cyperales), Π΄ΠΎΠΊ Π΄ΠΈΠΊΠΎΡ‚ΠΈΠ»Π΅Π΄ΠΎΠ½Π΅ Π±ΠΈΡ™ΠΊΠ΅ (Magnoliopsida) Ρƒ Π²Π΅Ρ›ΠΈΠ½ΠΈ ΡΠ»ΡƒΡ‡Π°Ρ˜Π΅Π²Π° ΠΎΠ΄Π»ΠΈΠΊΡƒΡ˜Π΅ ниска ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Ρƒ Ρ‚ΠΊΠΈΠ²ΠΈΠΌΠ° (испод 0,2% сувС масС), са ΠΈΠ·ΡƒΠ·Π΅Ρ‚ΠΊΠΎΠΌ Ρ€Π΅Π΄ΠΎΠ²Π° Urticales, Ericales, Lamiales, Myrtales, Caryophyllales ΠΈ Cucurbitales, Ρ‡ΠΈΡ˜ΠΈ појСдини прСдставници Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ ΠΈ Π²Π΅Ρ›Π΅ ΠΊΠΎΠ»ΠΈΡ‡ΠΈΠ½Π΅ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° (ΠΏΡ€Π΅ΠΊΠΎ 0,5% сувС масС). Π‘ΠΈΡ™ΠΊΠ΅ ΡƒΡΠ²Π°Ρ˜Π°Ρ˜Ρƒ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ ΠΈΠ· Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π° искључиво Ρƒ ΠΎΠ±Π»ΠΈΠΊΡƒ нСдисосованС ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠ²Π΅ кисСлинС (H4SiO4), ΡˆΡ‚ΠΎ јС ΠΈ јСдини биоприступачни ΠΎΠ±Π»ΠΈΠΊ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Π·Π° свС ΠΆΠΈΠ²Π΅ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅, ΡƒΠΊΡ™ΡƒΡ‡ΡƒΡ˜ΡƒΡ›ΠΈ ΠΈ људска Π±ΠΈΡ›Π°. Π”ΠΎ сада су Ρƒ ΠΊΠΎΡ€Π΅Π½Ρƒ Π±ΠΈΡ™Π°ΠΊΠ° окарактСрисана Π΄Π²Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚Π° транспортна ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° Π·Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ ΠΈ Ρ‚ΠΎ: Lsi1 (аквапорински ΠΊΠ°Π½Π°Π»), који Ρ‚Ρ€Π°Π½ΡΠΏΠΎΡ€Ρ‚ΡƒΡ˜Π΅ H4SiO4 Ρƒ симпласт ΠΊΠΎΡ€Π΅Π½Π° ΠΈ Lsi2 (анјонски транспортСр), који јС ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ€Π°Π½ Π·Π° траспорт ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° ΠΈΠ·Π²Π°Π½ СндодСрмиса (Π·ΠΎΠ½Π° ΠšΠ°ΡΠΏΠ°Ρ€ΠΈΡ˜Π΅Π²ΠΈΡ… Ρ‚Ρ€Π°ΠΊΠ°) ΠΈ ΠΏΡƒΡšΠ΅ΡšΠ΅ ксилСмских судова. Π”Π°Ρ™ΠΈ транспорт ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠ²Π΅ кисСлинС одвија сС ксилСмом ΠΈ погоњСн јС транспирационом ΡΡ‚Ρ€ΡƒΡ˜ΠΎΠΌ, која ΡƒΡ˜Π΅Π΄Π½ΠΎ ΠΈ ΠΏΡ€ΠΈΠ²Ρ€Π΅ΠΌΠ΅Π½ΠΎ спрСчава ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΡ˜Ρƒ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠ²Π΅ кисСлинС ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π°ΠΌΠ° ΠΈΠ·Π½Π°Π΄ 2,5 mM. Π£ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΈΠΌ ΠΎΡ€Π³Π°Π½ΠΈΠΌΠ° ΠΈ Ρ‚ΠΊΠΈΠ²ΠΈΠΌΠ° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌoΠ²Π° кисСлина ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·ΡƒΡ˜Π΅ Π΄ΠΎ Π°ΠΌΠΎΡ€Ρ„Π½ΠΈΡ… структура сличних ΠΌΠΈΠ½Π΅Ρ€Π°Π»Ρƒ ΠΎΠΏΠ°Π»Ρƒ, ΠΎΠ΄ ΠΊΠΎΡ˜ΠΈΡ… су ΠΈΠ·Π³Ρ€Π°Ρ’Π΅Π½Π΅ Ρ‚Π·Π². Ρ„ΠΈΡ‚ΠΎΠ»ΠΈΡ‚Π½Π΅ структурС, којС Π΄Π°Ρ˜Ρƒ ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΡƒ чврстоћу Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΌ Π΄Π΅Π»Ρƒ Π±ΠΈΡ™ΠΊΠ΅. Π‘Π»Π°Π³ΠΎΡ‚Π²ΠΎΡ€Π½ΠΎ Π΄Π΅Ρ˜ΡΡ‚Π²ΠΎ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° ΠΊΠΎΠ΄ Π±ΠΈΡ™Π°ΠΊΠ° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΡ… стрСсу ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ јС Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²Π°Π½ΠΎ Ρƒ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ. Π’Π°ΠΊΠΎ јС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π΄Π° Π±ΠΈΡ™ΠΊΠ΅ Ρ‚Ρ€Π΅Ρ‚ΠΈΡ€Π°Π½Π΅ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠΌ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ ΠΏΠΎΠ²Π΅Ρ›Π°Π½Ρƒ отпорност Π½Π° послСдицС Π³Π»ΠΎΠ±Π°Π»Π½ΠΈΡ… климатских ΠΏΡ€ΠΎΠΌΠ΅Π½Π° (ΡΡƒΡˆΠ°, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈ СкстрСми, Π£Π’ Π·Ρ€Π°Ρ‡Π΅ΡšΠ΅), кисСла ΠΈ заслањСна Π·Π΅ΠΌΡ™ΠΈΡˆΡ‚Π°, токсичнС ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π΅ Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡ˜ΡƒΠΌΠ°, арсСна ΠΈ Ρ‚Π΅ΡˆΠΊΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Π°, Π°Π»ΠΈ ΠΈ Π½Π° нСдостатак ΠΈ вишак (дисбаланс) Ρ…Ρ€Π°Π½ΠΈΠ²Π°. Π£Π»ΠΎΠ³Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Ρƒ отпорности Π±ΠΈΡ™Π°ΠΊΠ° Π½Π° стрСс ΠΈΠ·Π°Π·Π²Π°Π½ Π±ΠΈΠΎΡ‚ΠΈΡ‡ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΈΠΎΡ†ΠΈΠΌΠ° (Ρ…Π΅Ρ€Π±ΠΈΠ²ΠΎΡ€Π½ΠΈ инсСкти ΠΈ Π±ΠΈΡ™Π½ΠΈ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½ΠΈ) нијС само ΠΌΠ΅Ρ…Π°Π½ΠΈΡ‡ΠΊΠ΅ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅, Π²Π΅Ρ› Ρ‚Ρ€Π΅Ρ‚ΠΌΠ°Π½ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠΌ ΠΏΠΎΡ˜Π°Ρ‡Π°Π²Π° ΠΈ Π±ΠΈΠΎΡ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΈ ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ€ Π±ΠΈΡ™ΠΊΠ΅ Π½Π° Π½ΠΈΠ²ΠΎΡƒ Ρ‚Ρ€Π°Π½ΡΠΊΡ€ΠΈΠΏΡ†ΠΈΡ˜Π΅, ΡˆΡ‚ΠΎ доприноси ΠΏΠΎΡ˜Π°Ρ‡Π°Π½ΠΎΡ˜ синтСзи ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΡ… Ρ„ΡƒΠ½Π³ΠΈΡ†ΠΈΠ΄Π° (фитоалСксини) ΠΈ Ρ€Π΅ΠΏΠ΅Π»Π΅Π½Π°Ρ‚Π°. ΠŸΡ€ΠΈΠΌΠ΅Π½Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Ρƒ ΡΠ²Π΅Ρ‚ΡΠΊΠΎΡ˜ ΠΏΠΎΡ™ΠΎΠΏΡ€ΠΈΠ²Ρ€Π΅Π΄ΠΈ ΠΏΠ΅Ρ€ΠΌΠ°Π½Π΅Π½Ρ‚Π½ΠΎ растС, посСбно Ρƒ ΠΎΡ€Π³Π°Π½ΡΠΊΠΎΡ˜ ΠΈ Π±ΠΈΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠΎΡ˜ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΡšΠΈ. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ ΡƒΠ»Π°Π·ΠΈ Ρƒ састав Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€Π° (ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ†ΠΈΡ˜Π°), којС јС успоставио Ρ‚Π²ΠΎΡ€Π°Ρ† Π±ΠΈΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡ‡ΠΊΠ΅ ΠΏΠΎΡ™ΠΎΠΏΡ€ΠΈΠ²Ρ€Π΅Π΄Π΅ Π ΡƒΠ΄ΠΎΠ»Ρ„ Π¨Ρ‚Π°Ρ˜Π½Π΅Ρ€ (1861-1925); Π·Π°Ρ‚ΠΈΠΌ, смСша ΠΌΠ»Π΅Π²Π΅Π½ΠΈΡ… ΠΊΡ€Π°Π²Ρ™ΠΈΡ… Ρ€ΠΎΠ³ΠΎΠ²Π° ΠΈ ΠΊΠ²Π°Ρ€Ρ†Π° (501) ΠΈ ΠΏΡ€Π°Ρ… раставића (508). ΠŸΠΎΡ€Π΅Π΄ Ρ‚ΠΎΠ³Π°, свС вишС сС Π³ΠΎΠ²ΠΎΡ€ΠΈ ΠΈ ΠΎ ваТној ΡƒΠ»ΠΎΠ·ΠΈ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ°, односно Ρ„ΠΈΡ‚ΠΎΠ»ΠΈΡ‚Π° Ρƒ ΡΠ΅ΠΊΠ²Π΅ΡΡ‚Ρ€ΠΈΡ€Π°ΡšΡƒ угљСндиоксида (CO2) ΠΈΠ· атмосфСрС. ΠŸΡ€ΠΎΡ†Π΅ΡšΡƒΡ˜Π΅ сС Π΄Π° сСквСстарциони ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π» Ρ„ΠΈΡ‚ΠΎΠ»ΠΈΡ‚Π° Π·Π° ΡƒΠ³Ρ™Π΅Π½ΠΈΠΊ Ρƒ ΡΠ²Π΅Ρ‚ΡΠΊΠΎΡ˜ копнСној биомаси износи ΠΎΠΊΠΎ 157 ΠΌΠΈΠ»ΠΈΠΎΠ½Π° Ρ‚ΠΎΠ½Π° CO2 годишњС. Π—Π° Ρ€Π°Π·Π»ΠΈΠΊΡƒ ΠΎΠ΄ ΠΏΠΎΠ·Π½Π°Ρ‚ΠΈΡ… ΡˆΡ‚Π΅Ρ‚Π½ΠΈΡ… послСдица ΡƒΠ΄ΠΈΡΠ°ΡšΠ° силиконског ΠΏΡ€Π°Ρ…Π° ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ²Π»Π°ΠΊΠ°Π½Π° ΠΊΠΎΠ΄ Ρ™ΡƒΠ΄ΠΈ (опструктивно ΠΏΠ»ΡƒΡ›Π½ΠΎ ΠΎΠ±ΠΎΡ™Π΅ΡšΠ΅ – силикоза), односно ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Ρƒ Π²Π°Ρ€Π΅ΡšΡƒ сточнС Ρ…Ρ€Π°Π½Π΅ Π±ΠΎΠ³Π°Ρ‚Π΅ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠΌ ΠΊΠΎΠ΄ ΠΏΡ€Π΅ΠΆΠΈΠ²Π°Ρ€Π°, ΠΌΠ½ΠΎΠ³ΠΎ сС мањС ΠΏΡ€ΠΎΠΏΠ°Π³ΠΈΡ€Π°Ρ˜Ρƒ корисна ΡΠ²ΠΎΡ˜ΡΡ‚Π²Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Π·Π° Ρ™ΡƒΠ΄Π΅ ΠΈ ΠΆΠΈΠ²ΠΎΡ‚ΠΈΡšΠ΅. Π‘ΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ јС Π³Ρ€Π°Π΄ΠΈΠ²Π½ΠΈ Π΅Π»Π΅ΠΌΠ΅Π½Π°Ρ‚ који јС Π½Π΅ΠΎΠΏΡ…ΠΎΠ΄Π°Π½ Π·Π° биосинтСзу ΠΊΠΎΠ»Π°Π³Π΅Π½Π° ΠΈ Π³Π»ΠΈΠΊΠΎΠ·ΠΎΠ°ΠΌΠΈΠ½ΠΎΠ³Π»ΠΈΠΊΠ°Π½Π° ΠΈ стога ΡƒΠ»Π°Π·ΠΈ Ρƒ састав ΠΊΠΎΠ»Π°Π³Π΅Π½ΠΈΡ… Ρ‚ΠΊΠΈΠ²Π°, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су: кости, ΠΏΠ»ΡƒΡ›Π°, васкуларни ΠΎΡ€Π³Π°Π½ΠΈ, ΠΌΠΈΡˆΠΈΡ›Π½Π° Π²Π»Π°ΠΊΠ½Π°, ΠΊΠΎΠΆΠ°, Π½ΠΎΠΊΡ‚ΠΈ, коса, ΠΈΡ‚Π΄. ΠŸΡ€ΠΎΡΠ΅Ρ‡Π°Π½ Π΄Π½Π΅Π²Π½ΠΈ унос ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Ρƒ ΠΎΠ±Π»ΠΈΠΊΡƒ биоприступачнС ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠ²Π΅ кисСлинС износи ΠΎΠ΄ 9 Π΄ΠΎ 14 mg, Π΄ΠΎΠΊ су Π΄Π½Π΅Π²Π½Π΅ ΠΏΠΎΡ‚Ρ€Π΅Π±Π΅ Π·Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΎ Π²Π΅Ρ›Π΅ ΠΈ износС ΠΎΠ΄ 15 Π΄ΠΎ 40 mg Ρƒ зависности ΠΎΠ΄ ΠΏΠΎΠ»Π°, узраста ΠΈ тСлСснС масС. Π˜ΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π΄Π° Π΄Π½Π΅Π²Π½ΠΈ унос ΠΎΠ΄ најмањС 25 mg ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° доприноси Π·Π΄Ρ€Π°Π²Ρ™Ρƒ ΠΊΠΎΡΡ‚ΠΈΡ˜Ρƒ ΠΈ ΠΏΡ€Π΅Π²Π΅Π½Ρ†ΠΈΡ˜ΠΈ остСопорозС. ΠŸΠΎΡ€Π΅Π΄ Ρ‚ΠΎΠ³Π°, ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ ΠΌΠΎΠΆΠ΅ Π΄Π° Π·Π°ΠΌΠ΅Π½ΠΈ ΠΊΠ°Π»Ρ†ΠΈΡ˜ΡƒΠΌ Ρƒ ΠΈΠ·Π³Ρ€Π°Π΄ΡšΠΈ ΠΊΠΎΡΡ‚ΠΈΡ˜Ρƒ ΠΈ ΠΊΡ€Π²Π½ΠΈΡ… судова, Ρ‡ΠΈΠΌΠ΅ сС ΠΏΠΎΠ²Π΅Ρ›Π°Π²Π° ΡšΠΈΡ…ΠΎΠ²Π° Сластичност. Π‘ΡƒΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜Π° ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠΌ Ρ‚Π°ΠΊΠΎΡ’Π΅ доприноси ΠΏΡ€Π΅Π²Π΅Π½Ρ†ΠΈΡ˜ΠΈ Π½Π΅ΡƒΡ€ΠΎΠ΄Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… оболСња (Π½ΠΏΡ€. ΠΠ»Ρ†Ρ…Π°Ρ˜ΠΌΠ΅Ρ€ΠΎΠ²Π΅ болСсти), ΠΈΠΌΠ°Ρ˜ΡƒΡ›ΠΈ Ρƒ Π²ΠΈΠ΄Ρƒ Π΄Π° Ρƒ Ρ€Π΅Π°ΠΊΡ†ΠΈΡ˜ΠΈ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠ²Π΅ кисСлинС са Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡ˜ΡƒΠΌΠΎΠΌ Π½Π°ΡΡ‚Π°Ρ˜Ρƒ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡ΠΊΠΈ Π½Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈ алумосиликати, Ρ‡ΠΈΠΌΠ΅ сС ΡΠΌΠ°ΡšΡƒΡ˜Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ˜Π° слободног Π°Π»ΡƒΠΌΠΈΠ½ΠΈΡ˜ΡƒΠΌΠ° ΠΊΠΎΠΌΠ΅ сС ΠΏΡ€ΠΈΠΏΠΈΡΡƒΡ˜Π΅ ΡƒΠ»ΠΎΠ³Π° Ρƒ настанку ΠΏΠ»Π°ΠΊΠΎΠ²Π° Ρƒ ΠΌΠΎΠ·Π³Ρƒ. Π‘ΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΡƒ сС ΠΏΡ€ΠΈΠΏΠΈΡΡƒΡ˜Π΅ ΠΈ ΡƒΠ»ΠΎΠ³Π° Ρƒ Ρ€Π΅Π³ΡƒΠ»Π°Ρ†ΠΈΡ˜ΠΈ циклуса Ρ›Π΅Π»ΠΈΡ˜Π° Π»ΠΈΠΌΡ„ΠΎΡ†ΠΈΡ‚Π°, Ρ‡ΠΈΠΌΠ΅ посрСдно ΡƒΡ‚ΠΈΡ‡Π΅ Π½Π° ΠΈΠΌΡƒΠ½Π΅ ΠΈ ΠΈΠ½Ρ„Π»Π°ΠΌΠ°Ρ‚ΠΎΡ€Π½Π΅ ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ€Π΅. Π“Π»Π°Π²Π½ΠΈ ΠΈΠ·Π²ΠΎΡ€ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Ρƒ Ρ™ΡƒΠ΄ΡΠΊΠΎΡ˜ исхрани ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Ρ™Π°Ρ˜Ρƒ ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»Π½Π΅ ΠΆΠΈΡ‚Π°Ρ€ΠΈΡ†Π΅ ΠΈ ΡšΠΈΡ…ΠΎΠ²ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈ, који су слабијС заступљСни Ρƒ масовној исхрани ΡΡ‚Π°Π½ΠΎΠ²Π½ΠΈΡˆΡ‚Π²Π° Ρƒ Π‘Ρ€Π±ΠΈΡ˜ΠΈ, ΠΏΡ€Π΅Ρ‚Π΅ΠΆΠ½ΠΎ Π±Π°Π·ΠΈΡ€Π°Π½ΠΎΡ˜ Π½Π° Ρ…Π»Π΅Π±Ρƒ ΠΈ ΠΏΠ΅Ρ†ΠΈΠ²ΠΈΠΌΠ° ΠΎΠ΄ Π±Π΅Π»ΠΎΠ³ Π±Ρ€Π°ΡˆΠ½Π°. Π—Π±ΠΎΠ³ Ρ‚ΠΎΠ³Π° сС Π½Π°ΠΌΠ΅Ρ›Π΅ ΠΏΠΎΡ‚Ρ€Π΅Π±Π° Π·Π° Π΄ΠΎΠ΄Π°Ρ‚Π½ΠΎΠΌ ΡΡƒΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠΎΠΌ Ρƒ Ρ†ΠΈΡ™Ρƒ ΠΏΠΎΠ±ΠΎΡ™ΡˆΠ°ΡšΠ° Π½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ³ Π·Π΄Ρ€Π°Π²Ρ™Π°. ЈСдан ΠΎΠ΄ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΡ… суплСмСната свакако Ρ˜Π΅ΡΡƒ ΠΈ Π½Π΅ΠΊΠ΅ самониклС Π»Π΅ΠΊΠΎΠ²ΠΈΡ‚Π΅ Π±ΠΈΡ™ΠΊΠ΅, којС су ΠΏΠΎΠ·Π½Π°Ρ‚Π΅ Π΄Π° Π°ΠΊΡƒΠΌΡƒΠ»ΠΈΡ€Π°Ρ˜Ρƒ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌ, ΠΊΠ°ΠΎ ΡˆΡ‚ΠΎ су Π½ΠΏΡ€. раставићи, ΠΊΠΎΠΏΡ€ΠΈΠ²Π° (Urtica dioica), кисСљак (Rumex acetosella), троскот (Polygonum aviculare), Ρ˜Π°Π³ΠΎΡ€Ρ‡Π΅Π²ΠΈΠ½Π° (Primula veris), ΠΊΠΎΠΊΠΎΡ‚Π°Ρ† ΠΈΠ»ΠΈ ΠΆΠ΄Ρ€Π°Ρ™Π΅Π²ΠΈΠ½Π° (Melilotus albus), Π½Π°Π½Π° (Mentha piperita), ΠΌΠ°Ρ‚ΠΈΡ‡ΡšΠ°ΠΊ (Melissa officinalis), Ρ‚ΠΈΠΌΠΈΡ˜Π°Π½ (Thymus spp.), Π²Ρ€Π±ΠΈΡ†Π° Ρ†Ρ€Π²Π΅Π½Π° (Lythrum salicaria), ΠΈΡ‚Π΄. Ово Ρ€Π΅Π²ΠΈΡ˜Π°Π»Π½ΠΎ ΠΏΡ€Π΅Π΄Π°Π²Π°ΡšΠ΅ ΠΈΠΌΠ° ΡƒΠΏΡ€Π°Π²ΠΎ Π·Π° Ρ†ΠΈΡ™ Π΄Π° стручну ΠΈ ΡˆΠΈΡ€Ρƒ Ρ˜Π°Π²Π½ΠΎΡΡ‚ ΡƒΠΏΠΎΠ·Π½Π° са Π±Π»Π°Π³ΠΎΡ‚Π²ΠΎΡ€Π½ΠΈΠΌ дСловањСм ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΠ° Π½Π° Π±ΠΈΡ™ΠΊΠ΅ ΠΈ Ρ™ΡƒΠ΄Π΅, ΠΊΠ°ΠΎ ΠΈ Π΄Π° подстакнС Π΄Π°Ρ™Π° ΠΈΡΡ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ° Π»Π΅ΠΊΠΎΠ²ΠΈΡ‚ΠΎΠ³ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π° Π±ΠΈΡ™Π°ΠΊΠ° који сС заснива Π½Π° Π±ΠΈΠΎΠ°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌ ΡΠΈΠ»ΠΈΡ†ΠΈΡ˜ΡƒΠΌΡƒ
    • …
    corecore