15 research outputs found

    Revolutionizing Alzheimer\u27s disease and clinical trials through biomarkers

    Get PDF
    AbstractThe Alzheimer's Association's Research Roundtable met in May 2014 to explore recent progress in developing biomarkers to improve understanding of disease pathogenesis and expedite drug development. Although existing biomarkers have proved extremely useful for enrichment of subjects in clinical trials, there is a clear need to develop novel biomarkers that are minimally invasive and that more broadly characterize underlying pathogenic mechanisms, including neurodegeneration, neuroinflammation, and synaptic dysfunction. These may include blood-based assays and new neuropsychological testing protocols, as well as novel ligands for positron emission tomography imaging, and advanced magnetic resonance imaging methodologies. In addition, there is a need for biomarkers that can serve as theragnostic markers of response to treatment. Standardization remains a challenge, although international consortia have made substantial progress in this area and provide lessons for future standardization efforts

    Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors and breast cancer risk

    Get PDF
    Low-penetrance breast cancer susceptibility alleles seem to play a significant role in breast cancer risk but are difficult to identify in human cohorts. A genetic screen of 176 N2 backcross progeny of two Trp53+/- strains, BALB/c and C57BL/6, which differ in their susceptibility to mammary tumors, identified a modifier of mammary tumor susceptibility in an ∼25-Mb interval on mouse chromosome 7 (designated SuprMam1). Relative to heterozygotes, homozygosity for BALB/c alleles of SuprMam1 significantly decreased mammary tumor latency from 70.7 to 61.1 weeks and increased risk twofold (P = 0.002). Dmbt1 (deleted in malignant brain tumors 1) was identified as a candidate modifier gene within the SuprMam1 interval because it was differentially expressed in mammary tissues from BALB/c-Trp53+/- and C57BL/6-Trp53+/- mice. Dmbt1 mRNA and protein was reduced in mammary glands of the susceptible BALB/c mice. Immunohistochemical staining demonstrated that DMBT1 protein expression was also significandy reduced in normal breast tissue from women with breast cancer (staining score, 1.8; n = 46) compared with cancer-free controls (staining score, 3.9; n = 53; P < 0.0001). These experiments demonstrate the use of Trp53+/- mice as a sensitized background to screen for low-penetrance modifiers of cancer. The results identify a novel mammary tumor susceptibility locus in mice and support a role for DMBT1 in suppression of mammary tumors in both mice and women

    Deconvoluting Post-Transplant Immunity: Cell Subset-Specific Mapping Reveals Pathways for Activation and Expansion of Memory T, Monocytes and B Cells

    Get PDF
    A major challenge for the field of transplantation is the lack of understanding of genomic and molecular drivers of early post-transplant immunity. The early immune response creates a complex milieu that determines the course of ensuing immune events and the ultimate outcome of the transplant. The objective of the current study was to mechanistically deconvolute the early immune response by purifying and profiling the constituent cell subsets of the peripheral blood. We employed genome-wide profiling of whole blood and purified CD4, CD8, B cells and monocytes in tandem with high-throughput laser-scanning cytometry in 10 kidney transplants sampled serially pre-transplant, 1, 2, 4, 8 and 12 weeks. Cytometry confirmed early cell subset depletion by antibody induction and immunosuppression. Multiple markers revealed the activation and proliferative expansion of CD45RO+CD62L− effector memory CD4/CD8 T cells as well as progressive activation of monocytes and B cells. Next, we mechanistically deconvoluted early post-transplant immunity by serial monitoring of whole blood using DNA microarrays. Parallel analysis of cell subset-specific gene expression revealed a unique spectrum of time-dependent changes and functional pathways. Gene expression profiling results were validated with 157 different probesets matching all 65 antigens detected by cytometry. Thus, serial blood cell monitoring reflects the profound changes in blood cell composition and immune activation early post-transplant. Each cell subset reveals distinct pathways and functional programs. These changes illuminate a complex, early phase of immunity and inflammation that includes activation and proliferative expansion of the memory effector and regulatory cells that may determine the phenotype and outcome of the kidney transplant

    Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone

    No full text
    The subventricular zone (SVZ) is the largest germinal zone in the mature rodent brain, and it continuously produces young neurons that migrate to the olfactory bulb. Neural stem cells in this region generate migratory neuroblasts via highly proliferative transit-amplifying cells. The Wnt/beta-catenin signaling pathway partially regulates the proliferation and neuronal differentiation of neural progenitor cells in the embryonic brain. Here, we studied the role of beta-catenin signaling in the adult mouse SVZ. beta-Catenin-dependent expression of a destabilized form of green fluorescent protein was detected in progenitor cells in the adult SVZ of Axin2-d2EGFP reporter mice. Retrovirus-mediated expression of a stabilized beta-catenin promoted the proliferation of Mash1+ cells and inhibited their differentiation into neuroblasts. Conversely, the expression of Dkk1, an inhibitor of Wnt signaling, reduced the proliferation of Mash1+ cells. In addition, an inhibitor of GSK3 beta promoted the proliferation of Mash1+ cells and increased the number of new neurons in the olfactory bulb 14 days later. These results suggest that beta-catenin signaling plays a role in the proliferation of progenitor cells in the SVZ of the adult mouse brain

    A phase III randomized trial of gantenerumab in prodromal Alzheimer's disease

    Get PDF
    Background: Gantenerumab is a fully human monoclonal antibody that binds aggregated amyloid-β (Aβ) and removes Aβ plaques by Fc receptor-mediated phagocytosis. In the SCarlet RoAD trial, we assessed the efficacy and safety of gantenerumab in prodromal Alzheimer's disease (AD). Methods: In this randomized, double-blind, placebo-controlled phase III study, we investigated gantenerumab over 2 years. Patients were randomized to gantenerumab 105 mg or 225 mg or placebo every 4 weeks by subcutaneous injection. The primary endpoint was the change from baseline to week 104 in Clinical Dementia Rating Sum of Boxes (CDR-SB) score. We evaluated treatment effects on cerebrospinal fluid biomarkers (all patients) and amyloid positron emission tomography (substudy). A futility analysis was performed once 50% of patients completed 2 years of treatment. Safety was assessed in patients who received at least one dose. Results: Of the 3089 patients screened, 797 were randomized. The study was halted early for futility; dosing was discontinued; and the study was unblinded. No differences between groups in the primary (least squares mean [95% CI] CDR-SB change from baseline 1.60 [1.28, 1.91], 1.69 [1.37, 2.01], and 1.73 [1.42, 2.04] for placebo, gantenerumab 105 mg, and gantenerumab 225 mg, respectively) or secondary clinical endpoints were observed. The incidence of generally asymptomatic amyloid-related imaging abnormalities increased in a dose-and APOE ϵ4 genotype-dependent manner. Exploratory analyses suggested a dose-dependent drug effect on clinical and biomarker endpoints. Conclusions: The study was stopped early for futility, but dose-dependent effects observed in exploratory analyses on select clinical and biomarker endpoints suggest that higher dosing with gantenerumab may be necessary to achieve clinical efficacy. Trial registration: ClinicalTrials.gov, NCT01224106. Registered on October 14, 2010
    corecore