7 research outputs found

    Kinetics of oxygen sorption-desorption processes in manganites of La0.7Sr0.3Mn0.9Fe0.1O3-δ composition

    No full text
    Based on the data of thermogravimetric analysis the values of the oxygen index (3-δ) in the manganite of the La0.7Sr0.3Mn0.9Fe0.1O3-δ composition, obtained by solid-phase reaction technique, have been calculated. The analysis of oxygen sorption-desorption curves showed that the processes of oxygen release and absorption at pO2 = 10 Pa and pO2 = 400 Pa are not reversible. The minima of the derivative dδ/dt = f (T) corresponding to the maxima of the oxygen extraction rate indicate the complex character of changes in the oxygen desorption rate from manganite. The decrease in the heating and cooling rate from 6.6 K/min to 2.6 K/min resulted in a significant change in the value ∆δ, indicating the dependence of anion mobility on the oxygen concentration in the magnet structure. It has been revealed that in the La0.7Sr0.3Mn0.9Fe0.1O3-δ manganite the oxygen desorption kinetics is well described by the exponential dependence on the Kramers model, which implies no return of desorbed oxygen to the sample. This model indicates the non-stationarity of the diffusion flux through the barrier during desorption of oxygen from samples. The calculation of the activation energy of oxygen desorption by the Merzhanov method at various partial pressures of oxygen has shown that at the initial stage of oxygen extraction from La0.7Sr0.3Mn0.9Fe0.1O3-δ, the activation energy of oxygen desorption has a minimum value (Еа = 103.7 kJ/mol at δ = 0.005) and as the concentration of oxygen vacancies increases, it rises reaching saturation (Еа = 134.3 kJ/mol at δ = 0.06). It is assumed that with an increase in the concentration of oxygen vacancies, an interaction occurs between them, followed by the processes of their ordering with the formation of associates

    Benzoxazine Monomers and Polymers Based on 3,3′-Dichloro-4,4′-Diaminodiphenylmethane: Synthesis and Characterization

    No full text
    To reveal the effect of chlorine substituents in the ring of aromatic amine on the synthesis process of benzoxazine monomer and on its polymerization ability, as well as to develop a fire-resistant material, a previously unreported benzoxazine monomer based on 3,3′-dichloro-4,4′-diaminodiphenylmethane was obtained in toluene and mixture toluene/isopropanol. The resulting benzoxazine monomers were thermally cured for 2 h at 180 °C, 4 h at 200 °C, 2 h at 220 °C. A comparison between the rheological, thermal and fire-resistant properties of the benzoxazines based on 3,3′-dichloro-4,4′-diaminodiphenylmethane and, for reference, 4,4′-diaminodimethylmethane was made. The effect of the reaction medium on the structure of the oligomeric fraction and the overall yield of the main product were studied and the toluene/ethanol mixture was found to provide the best conditions; however, in contrast to most known diamine-based benzoxazines, synthesis in the pure toluene is also possible. The synthesized monomers can be used as thermo- and fire-resistant binders for polymer composite materials, as well as hardeners for epoxy resins. Chlorine-containing polybenzoxazines require more severe conditions for polymerization but have better fire resistance

    The Dichotomy of Mn–H Bond Cleavage and Kinetic Hydricity of Tricarbonyl Manganese Hydride Complexes

    No full text
    Acid-base characteristics (acidity, pKa, and hydricity, ΔG°H− or kH−) of metal hydride complexes could be a helpful value for forecasting their activity in various catalytic reactions. Polarity of the M–H bond may change radically at the stage of formation of a non-covalent adduct with an acidic/basic partner. This stage is responsible for subsequent hydrogen ion (hydride or proton) transfer. Here, the reaction of tricarbonyl manganese hydrides mer,trans–[L2Mn(CO)3H] (1; L = P(OPh)3, 2; L = PPh3) and fac–[(L–L′)Mn(CO)3H] (3, L–L′ = Ph2PCH2PPh2 (dppm); 4, L–L′ = Ph2PCH2–NHC) with organic bases and Lewis acid (B(C6F5)3) was explored by spectroscopic (IR, NMR) methods to find the conditions for the Mn–H bond repolarization. Complex 1, bearing phosphite ligands, features acidic properties (pKa 21.3) but can serve also as a hydride donor (ΔG≠298K = 19.8 kcal/mol). Complex 3 with pronounced hydride character can be deprotonated with KHMDS at the CH2–bridge position in THF and at the Mn–H position in MeCN. The kinetic hydricity of manganese complexes 1–4 increases in the order mer,trans–[(P(OPh)3)2Mn(CO)3H] (1) mer,trans–[(PPh3)2Mn(CO)3H] (2) ≈ fac–[(dppm)Mn(CO)3H] (3) fac–[(Ph2PCH2NHC)Mn(CO)3H] (4), corresponding to the gain of the phosphorus ligand electron-donor properties

    Synthesis and Application of Arylaminophosphazene as a Flame Retardant and Catalyst for the Polymerization of Benzoxazines

    No full text
    A novel type of phosphazene containing an additive that acts both as a catalyst and as a flame retardant for benzoxazine binders is presented in this study. The synthesis of a derivative of hexachlorocyclotriphosphazene (HCP) and meta-toluidine was carried out in the medium of the latter, which made it possible to achieve the complete substitution of chlorine atoms in the initial HCP. Thermal and flammability characteristics of modified compositions were investigated. The modifier catalyzes the process of curing and shifts the beginning of reaction from 222.0 °C for pure benzoxazine to 205.9 °C for composition with 10 phr of modifier. The additive decreases the glass transition temperature of compositions. Achievement of the highest category of flame resistance (V-0 in accordance with UL-94) is ensured both by increasing the content of phenyl residues in the composition and by the synergistic effect of phosphorus and nitrogen. A brief study of the curing kinetics disclosed the complex nature of the reaction. An accurate two-step model is obtained using the extended Prout–Tompkins equation for both steps

    Steric and Acidity Control in Hydrogen Bonding and Proton Transfer to <i>trans-</i>W(N<sub>2</sub>)<sub>2</sub>(dppe)<sub>2</sub>

    No full text
    The interaction of <i>trans-</i>W­(N<sub>2</sub>)<sub>2</sub>(dppe)<sub>2</sub> (<b>1</b>; dppe = 1,2-bis­(diphenylphosphino)­ethane) with relatively weak acids (<i>p</i>-nitrophenol, fluorinated alcohols, CF<sub>3</sub>COOH) was studied by means of variable temperature IR and NMR spectroscopy and complemented by DFT/B3PW91-D3 calculations. The results show, for the first time, the formation of a hydrogen bond to the coordinated dinitrogen, W–NN···H–O, that is preferred over H-bonding to the metal atom, W···H–O, despite the higher proton affinity of the latter. Protonation of the core metalthe undesirable side step in the conversion of N<sub>2</sub> to NH<sub>3</sub>can be avoided by using weaker and, more importantly, bulkier acids
    corecore