24 research outputs found

    Tendencies of interaction between Russian universities and companies implementing innovative development programs

    Get PDF
    The main aim of this article is to analyze key indicators and trends of global innovative development and their role in development. Attention is given to the consideration of several mechanisms of interaction between universities and state companies, with concrete measures and steps that can be used in economic policy. The authors analyze the real experience of the Russian economy now. Based on collected data for the total volume of R&D, revenues and the number of patents, regression models were constructed to determine the relationship between the named indicators. Recommendations and innovative ideas to improve the economic policy are given to achieve the goals and to justify the use of mechanisms of "compulsion to innovate" in state companies for the implementation of more productive development programs.peer-reviewe

    SYSTEM OF LOAD DISTRIBUTION OF SHIP DIESEL GENERATORS BASED ON NEURAL NETWORKS

    Get PDF
    The dependence of the specific fuel consumption of the ship diesel-generator set on the generated electric power and the power factor is given. An algorithm for load distribution between parallel marine diesel generator sets is given, taking into account the dependencies of the specific fuel consumption on the generated power and the power factor of each marine diesel generator set. The possibility of using neural networks to solve the problem of minimizing the specific fuel consumption for parallel operation of ship diesel-generator sets in the steady state mode is considered. A neural network model for reducing fuel consumption is proposed by distributing the total electric load of a ship power plant between diesel generators operating in parallel. Such a model, based on the database obtained in the training process, which is implemented by microprocessor controllers with the algorithms of searching for a combination of capacities inherent in them for each of the parallel running generator, at which the minimum flow is reached, independently determines how it is necessary to load the units operating in parallel, to achieve a minimization of fuel consumption; and periodically checks the correspondence between the estimated (calculated) and the actual fuel costs, which ensures the control of the technical condition of the mechanisms

    Allosteric Modulation Balances Thermodynamic Stability and Restores Function of ΔF508 CFTR

    Get PDF
    Most cystic fibrosis is caused by a deletion of a single residue (F508) in CFTR that disrupts the folding and biosynthetic maturation of the ion channel protein. Progress towards understanding the underlying mechanisms and overcoming the defect remain incomplete. Here we show that the thermal instability of human ΔF508 CFTR channel activity evident in both cell-attached membrane patches and planar phospholipid bilayers is not observed in corresponding mutant CFTRs of several non-mammalian species. These more stable orthologs are distinguished from their mammalian counterparts by the substitution of proline residues at several key dynamic locations in the first nucleotide domain (NBD1), including the structurally diverse region (SDR), the gamma phosphate switch loop and the Regulatory Insertion (RI). Molecular Dynamic analyses revealed that addition of the prolines could reduce flexibility at these locations and increase the temperatures of unfolding transitions of ΔF508 NBD1 to that of the wild-type. Introduction of these prolines experimentally into full-length human ΔF508 CFTR together with the already recognized I539T suppressor mutation, also in the SDR, restored channel function and thermodynamic stability as well as its trafficking to and lifetime at the cell surface. Thus, while cellular manipulations that circumvent its culling by quality control systems leave ΔF508 CFTR dysfunctional at physiological temperature, restoration of the delicate balance between the dynamic protein’s inherent stability and channel activity returns a near-normal state

    Novel robust biomarkers for human bladder cancer based on activation of intracellular signaling pathways

    Get PDF
    Sherpa Romeo blue journal. Open access article. Creative Commons Attribution 3.0 License (CC BY 3.0) applies.We recently proposed a new bioinformatic algorithm called OncoFinder for quantifying the activation of intracellular signaling pathways. It was proved advantageous for minimizing errors of high-throughput gene expression analyses and showed strong potential for identifying new biomarkers. Here, for the first time, we applied OncoFinder for normal and cancerous tissues of the human bladder to identify biomarkers of bladder cancer. Using Illumina HT12v4 microarrays, we profiled gene expression in 17 cancer and seven non-cancerous bladder tissue samples. These experiments were done in two independent laboratories located in Russia and Canada. We calculated pathway activation strength values for the investigated transcriptomes and identified signaling pathways that were regulated differently in bladder cancer (BC) tissues compared with normal controls. We found, for both experimental datasets, 44 signaling pathways that serve as excellent new biomarkers of BC, supported by high area under the curve (AUC) values. We conclude that the OncoFinder approach is highly efficient in finding new biomarkers for cancer. These markers are mathematical functions involving multiple gene products, which distinguishes them from “traditional” expression biomarkers that only assess concentrations of single genes.Ye

    3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks

    No full text
    The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case—hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting—hydrogels and bioinks, as well as the biopolymers underlying the indicated products

    MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways

    No full text
    <p>MicroRNAs (miRs) are short noncoding RNA molecules that regulate expression of target mRNAs. Many published sources provide information about miRs and their targets. However, bioinformatic tools elucidating higher level impact of the established total miR profiles, are still largely missing. Recently, we developed a method termed OncoFinder enabling quantification of the activities of intracellular molecular pathways basing on gene expression data. Here we propose a new technique, MiRImpact, which enables to link miR expression data with its estimated outcome on the regulation of molecular pathways, like signaling, metabolic, cytoskeleton rearrangement, and DNA repair pathways. MiRImpact uses OncoFinder rationale for pathway activity calculations, with the major distinctions that (i) it deals with the concentrations of miRs - known regulators of gene products participating in molecular pathways, and (ii) miRs are considered as negative regulators of target molecules, if other is not specified. MiRImpact operates with 2 types of databases: for molecular targets of miRs and for gene products participating in molecular pathways. We applied MiRImpact to compare regulation of human bladder cancer-specific signaling pathways at the levels of mRNA and miR expression. We took 2 most complete alternative databases of experimentally validated miR targets – miRTarBase and DianaTarBase, and an OncoFinder database featuring 2725 gene products and 271 signaling pathways. We showed that the impact of miRs is orthogonal to pathway regulation at the mRNA level, which stresses the importance of studying posttranscriptional regulation of gene expression. We also report characteristic set of miR and mRNA regulation features linked with bladder cancer.</p
    corecore