27 research outputs found

    A systematic review of recent phase-II trials in refractory or recurrent osteosarcoma: Can we inform future trial design?

    Get PDF
    Background/Objective: To analyze changes in recurrent/refractory osteosarcoma phase II trials over time to inform future trials in this population with poor prognosis.// Methods: A systematic review of trials registered on trial registries between 01/01/2017–14/02/2022. Comparison of 98 trials identified between 2003 and 2016. Publication search/analysis for both periods, last update on 01/12/2022.// Results: Between 2017 and 2022, 71 phase-II trials met our selection criteria (19 osteosarcoma-specific trials, 14 solid tumor trials with and 38 trials without an osteosarcoma-specific stratum). The trial number increased over time: 13.9 versus 7 trials/year (p = 0.06). Monotherapy remained the predominant treatment (62% vs. 62%, p = 1). Targeted therapies were increasingly evaluated (66% vs. 41%, P = 0.001). Heterogeneity persisted in the trial characteristics. The inclusion criteria were measurable disease (75%), evaluable disease (14%), and surgical remission (11%). 82% of the trials included pediatric or adolescent patients. Biomarker-driven trials accounted for 25% of the total trials. The survival endpoint use (rather than response) slightly increased (40% versus 31%), but the study H1/H0 hypotheses remained heterogeneous. Single-arm designs predominated over multiarm trials (n = 7). Available efficacy data on 1361 osteosarcoma patients in 58 trials remained disappointing, even though 21% of these trials were considered positive, predominantly those evaluating multi-targeted kinase inhibitors.// Conclusion: Despite observed changes in trial design and an increased number of trials investigating new therapies, high heterogeneity remained with respect to patient selection, study design, primary endpoints, and statistical hypotheses in recently registered phase II trials for osteosarcoma. Continued optimization of trial design informed by a deeper biological understanding should strengthen the development of new therapies

    A Phase II Trial of a Personalized, Dose-Intense Administration Schedule of (177)Lutetium-DOTATATE in Children With Primary Refractory or Relapsed High-Risk Neuroblastoma-LuDO-N

    Get PDF
    Background:& nbsp;Half the children with high-risk neuroblastoma die with widespread metastases. Molecular radiotherapy is an attractive systemic treatment for this relatively radiosensitive tumor. I-131-mIBG is the most widely used form in current use, but is not universally effective. Clinical trials of (177)Lutetium DOTATATE have so far had disappointing results, possibly because the administered activity was too low, and the courses were spread over too long a period of time, for a rapidly proliferating tumor. We have devised an alternative administration schedule to overcome these limitations. This involves two high-activity administrations of single agent Lu-177-DOTATATE given 2 weeks apart, prescribed as a personalized whole body radiation absorbed dose, rather than a fixed administered activity. "A phase II trial of (177)Lutetium-DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma - LuDO-N " (EudraCT No: 2020-004445-36, Identifier: NCT04903899) evaluates this new dosing schedule.& nbsp;Methods:& nbsp;The LuDO-N trial is a phase II, open label, multi-center, single arm, two stage design clinical trial. Children aged 18 months to 18 years are eligible. The trial is conducted by the Nordic Society for Pediatric Hematology and Oncology (NOPHO) and it has been endorsed by SIOPEN (). The Karolinska University Hospital, is the sponsor of the LuDO-N trial, which is conducted in collaboration with Advanced Accelerator Applications, a Novartis company. All Scandinavian countries, Lithuania and the Netherlands participate in the trial and the UK has voiced an interest in joining in 2022.& nbsp;Results:& nbsp;The pediatric use of the Investigational Medicinal Product (IMP) Lu-177-DOTATATE, as well as non-IMPs SomaKit TOC (R) (Ga-68-DOTATOC) and LysaKare (R) amino acid solution for renal protection, have been approved for pediatric use, within the LuDO-N Trial by the European Medicines Agency (EMA). The trial is currently recruiting. Recruitment is estimated to be finalized within 3-5 years.& nbsp;Discussion:& nbsp;In this paper we present the protocol of the LuDO-N Trial. The rationale and design of the trial are discussed in relation to other ongoing, or planned trials with similar objectives. Further, we discuss the rapid development of targeted radiopharmaceutical therapy and the future perspectives for developing novel therapies for high-risk neuroblastoma and other pediatric solid tumors.Peer reviewe

    Myeloid cells from Langerhans cell histiocytosis patients exhibit increased vesicle trafficking and an altered secretome capable of activating NK cells

    Get PDF
    Langerhans cell histiocytosis (LCH) is a potentially life-threatening inflammatory myeloid neoplasia linked to pediatric neurodegeneration, whereby transformed LCH cells form agglomerated lesions in various organs. Although MAP-kinase pathway mutations have been identified in LCH cells, the functional consequences of these mutations and the mechanisms that cause the pathogenic behavior of LCH cells are not well understood. In our study, we used an in vitro differentiation system and RNA-sequencing to compare monocyte-derived dendritic cells from LCH patients to those derived from healthy controls or patients with Crohn’s disease, a non-histiocytic inflammatory disease. We observed that interferon-γ treatment exacerbated intrinsic differences between LCH patient and control cells, including strikingly increased endo- and exocytosis gene activity in LCH patients. We validated these transcriptional patterns in lesions and functionally confirmed that LCH cells exhibited increased endo- and exocytosis. Furthermore, RNA-sequencing of extracellular vesicles revealed the enrichment of pathological transcripts involved in cell adhesion, MAP-kinase pathway, vesicle trafficking and T-cell activation in LCH patients. Thus, we tested the effect of the LCH secretome on lymphocyte activity and found significant activation of NK cells. These findings implicate extracellular vesicles in the pathology of LCH for the first time, in line with their established roles in the formation of various other tumor niches. Thus, we describe novel traits of LCH patient cells and suggest a pathogenic mechanism of potential therapeutic and diagnostic importance

    Overexpression of the Interferon-Inducible Isoform 4 of <i>NCOA7</i> Dissects the Entry Route of Enveloped Viruses and Demonstrates that HIV Enters Cells via Fusion at the Plasma Membrane

    No full text
    The HIV-1 entry-route is a matter of ongoing controversy, and there is evidence for fusion either at the cell surface or from within endosomes. A recent report demonstrated that isoform 4 of nuclear receptor coactivator 7 (NCOA7iso4) interacts with endolysosomal vacuolar-type H+-ATPase (V-ATPase), increasing lytic activity and thereby severely affecting the entry of vesicular stomatitis virus glycoprotein (VSV-G)-mediated, but not HIV-Env-mediated, entry and infection. As basal expression of NCOA7iso4 is low in the absence of type-1 interferons, its overexpression is a novel tool to study viral entry

    SAMHD1 is a barrier to antimetabolite-based cancer therapies

    No full text
    The outcome of acute myelogenous leukemia (AML) therapy depends on the propensity of leukemic blasts to accumulate ara-CTP, the active triphosphate of cytarabine (ara-C). We identified sterile α motif and HD domain-containing protein 1 (SAMHD1) as an ara-CTPase that protects cancer cells from cytarabine-induced toxicity. Therefore, we propose targeting SAMHD1 as a strategy to potentiate cytarabine and possibly other antimetabolite-based therapies

    Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies

    No full text
    Herold, Nikolas et al.The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP), which causes DNA damage through perturbation of DNA synthesis. Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment. Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR-Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient-derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.This work was supported by grants from the Swedish Children’s Cancer Foundation (TJ2016-0040 (to N.H.); 2015-0005 (to J.-I.H.); PR2015-0009 (to D.G.); and PR2013-0002 and PR2014-0048 (both to T.H.)), the Swedish Cancer Society (CAN 2016/837 to J.W.; CAN 2014/814 to S.L.; CAN 2015/768 to D.G.; CAN 2013/396 to J.-I.H.; and CAN 2012/770 and CAN 2015/255 to T.H.), the Swedish Research Council (2014-1839 to M.U.; 2015-02498 to S.L.; 2012-2037 to D.G.; and 2012-5935 and 2013-3791 to T.H.), Radiumhemmet’s Research Foundations (154242 to G.R. and 144063 to D.G.), the Knut and Alice Wallenberg Foundation (KAW2014.0273 to T.H.), the Swedish Pain Relief Foundation (SSF/01-05 to T.H.), the Torsten and Ragnar Söderberg Foundation (to T.H.), the David and Astrid HagelĂ©n Foundation (C24702193 to B.D.G.P.) and the Stockholm County Council (ALF project) (20150353 to S.L. and 20150016 to J.-I.H.). This work was supported by the German Research Foundation (DFG) (SCHA1950/1-1 to T.S.) and partially through the Federal Ministry of Education and Research of Germany (BMBF)–supported Immunoquant project (0316170 C to T.S.) and HIVERA: EURECA project (01KI1307B to T.S.). S.G.R. is supported by an EMBO Long-Term Fellowship (ALTF-605-2014). Chemical Biology Consortium Sweden is funded by the Swedish Research Council, Science for Life Laboratories and Karolinska Institutet (829-2009-6241 to H.A. and T.L.).Peer Reviewe

    Effects of inner nuclear membrane proteins SUN1/UNC-84A and SUN2/UNC- 84B on the early steps of HIV-1 infection

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1−/− and SUN2−/− cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis

    Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism

    No full text
    Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine

    Incidence and surveillance of acute cardiovascular toxicities in paediatric acute lymphoblastic leukaemia: A retrospective population-based single-centre cohort study

    No full text
    Aim: Here, we studied the incidence of acute cardiovascular toxicities in children treated for acute lymphoblastic leukaemia (ALL). Methods: We performed a population-based single-centre longitudinal retrospective cohort study in 70 children diagnosed and treated with anthracycline-containing therapy against ALL at Karolinska University Hospital during 2015–2019 with a follow-up period of at least three months. Cardiovascular surveillance for these patients included echocardiography with measurements of left ventricular ejection fraction (LVEF) and shortening fraction (LVSF), electrocardiography and non-invasive blood pressure monitoring. Results: No patient experienced a significant decrease in LVEF or LVSF during or early after primary cancer treatment including anthracyclines. Surveillance with LVEF and LVSF was unable to predict the trajectory to severe clinical heart failure in one patient following treatment. Pericardial effusion prior to therapy initiation occurred in 13.6% of the patients. The incidence of intracardiac thrombosis and arterial hypertension was 8.5%, and 20%, respectively. Conclusion: Early cardiovascular toxicities were common in this paediatric ALL cohort. We confirm that early routine LVEF and LVSF assessments were insufficient to identify patients at risk of subsequent treatment-related heart failure. This underlines the unmet need of more sensitive methods for cardiovascular surveillance in children treated for cancer to reduce the burden of cardiovascular morbidity and mortality
    corecore