34,869 research outputs found

    Diffractive Hard Dijets and Nuclear Parton Distributions

    Full text link
    Diffraction plays an exceptional role in DIS off heavy nuclei. First, diffraction into hard dijets is an unique probe of the unintegrated glue in the target. Second, because diffraction makes 50 per cent of total DIS off a heavy target, understanding diffraction in a saturation regime is crucial for a definition of saturated nuclear parton densities. After brief comments on the Nikolaev-Zakharov (NZ) pomeron-splitting mechanism for diffractive hard dijet production, I review an extension of the Nikolaev-Schafer-Schwiete (NSS) analysis of diffractive dijet production off nuclei to the definition of nuclear partons in the saturation regime. I emphasize the importance of intranuclear final state interactions for the parton momentum distributions.Comment: 9 pages, 2 figures, to be published in Proceedings of the Workshop on Exclusive Processes at High Momentum Transfer, Jefferson Lab, May 15-18, 2002. Typos corrected, discussion of the results extende

    Double-exchange theory of ferroelectric polarization in orthorhombic manganites with twofold periodic magnetic texture

    Full text link
    We argue that many aspects of improper ferroelectric activity in orthorhombic manganites can be rationalized by considering the limit of infinite intra-atomic splitting between the majority- and minority-spin states (or the double exchange limit), which reduces the problem to the analysis of a spinless double exchange (DE) Hamiltonian. We apply this strategy to the low-energy model, derived from the first-principles calculations, and combine it with the Berry-phase theory of electric polarization. We start with the simplest two-orbital model, describing the behavior of the eg bands, and apply it to the E-type antiferromagnetic (AFM) phase, which in the DE limit effectively breaks up into one-dimensional zigzag chains. We derive an analytical expression for the electronic polarization (Pel) and explain how it depends on the orbital ordering and the energy splitting Delta between eg states. Then, we evaluate parameters of this model, starting from a more general five-orbital model for all Mn 3d bands and constructing a new downfolded model for the eg bands. From the analysis of these parameters, we conclude that the behavior of Pel in realistic manganites corresponds to the limit of large Delta. We further utilize this property in order to derive an analytical expression for Pel in a general two-fold periodic magnetic texture, based on the five-orbital model and the perturbation-theory expansion for the Wannier functions in the first order of 1/Delta. This expression explains the functional dependence of Pel on the relative directions of spins. Furthermore, it suggests that Pel is related to the asymmetry of the transfer integrals, which should simultaneously have symmetric and antisymmetric components. Finally, we explain how the polarization can be switched between orthorhombic directions a and c by inverting the zigzag AFM texture in every second ab plane.Comment: 41 page, 10 figure

    Spin dependence of ferroelectric polarization in the double exchange model for manganites

    Full text link
    The double exchange (DE) model is systematically applied for studying the coupling between ferroelectric (FE) and magnetic orders in several prototypical types of multiferroic manganites. The model was constructed for the magnetically active Mn 3d3d bands in the basis of Wannier functions and include the effect of screened on-site Coulomb interactions. The essence of our approach for the FE polarization is to use the Berry phase theory, formulated in terms of occupied Wannier functions, and to evaluate the asymmetric spin-dependent change of these functions in the framework of the DE model. This enables us to quantify the effect of the magnetic symmetry breaking and derive several useful expressions for the electronic polarization P{\bf P}, depending on the relative directions of spins. The proposed theory is applied to the solution of three major problems: (i) The magnetic-state dependence of P{\bf P} in hexagonal manganites; (ii) The microscopic relationship between canted ferromagnetism and P{\bf P} in monoclinic BiMnO3_3; (iii) The origin of FE activity in orthorhombic manganites. We show that for an arbitrary noncollinear magnetic structure, propagating along the orthorhombic b\boldsymbol{b} axis and antiferromagnetically coupled c\boldsymbol{c}, P{\bf P} can be obtained by scaling the one of the E-phase with the prefactor depending only on the relative directions of spins and being the measure of the spin inhomogeneity. This picture works equally well for the twofold (HoMnO3_3) and fourfold (TbMnO3_3) periodic manganites. The basic difference is that the twofold periodic magnetic structure is strongly inhomogeneous, that leads to large P{\bf P}. On the contrary, the fourfold periodic magnetic structure can be viewed as a moderately distorted homogeneous spin spiral, which corresponds to weaker P{\bf P}.Comment: 32 pages, 7 figure

    Possible Odderon discovery at HERA via charge asymmetry in the diffractive pi+pi- production

    Full text link
    We discuss how the evasive Odderon signal can be enhanced by final state interactions. We suggest the charge asymmetry of pion spectra in diffractive pi+pi- photoproduction as a promising signature of the Odderon exchange.Comment: 4 pages, To appear in Proceedings of the 9th International Workshop on Deep Inelastic Scattering (DIS2001), Bologna, Italy, 27 Apr. - 1 May 200

    Diffractive dissociation of gluons into heavy quark-antiquark pairs in proton-proton collisions

    Get PDF
    We discuss diffractive dissociation of gluons into heavy quark pairs. The particular mechanism is similar to the diffractive dissociation of virtual photons into quarks, which drives diffractive deep inelastic production of charm in the low-mass diffraction, or large β\beta-region. There, it can be understood, with some reservations, in terms of a valence heavy quark content of the Pomeron. The amplitude for the gpQQˉpg p \to Q \bar Q p is derived in the impact parameter and momentum space. The cross section for single diffractive ppQQˉpXp p \to Q \bar Q p X is calculated as a convolution of the elementary cross section and gluon distribution in the proton. Integrated cross section and the differential distributions in e.g. transverse momentum and rapidity of the charm and bottom quark and antiquark, as well as the quark-antiquark invariant mass are calculated for the nominal LHC energy for different unintegrated gluon distributions from the literature. The ratio of the bottom-to-charm cross sections are shown and discussed as a function of several kinematical variables.Comment: 17 pages, 12 figure

    Diffractive DIS: Where Are We?

    Get PDF
    A brief review of the modern QCD theory of diffractive DIS is given. The recent progress has been remarkably rapid, all the principal predictions from the color dipole approach to diffraction - the (Q2+mV2)(Q^2+m_V^2) scaling, the pattern of SCHNC, shrinkage of the diffraction cone in hard diffractive DIS, the strong impact of longitudinal gluons in inclusive J/ΨJ/\Psi production at Tevatron -, have been confirmed experimentally.Comment: Invited talk at the International Conference on New Trends in High Eenergy Physics, (experiment, phenomenology, theory), Yalta, Crimea, Ukraine, 22-29 September, 2001, 16 pages, 6 figures, typos in references correcte
    corecore