41 research outputs found

    Global FT4 immunoassay standardization: an expert opinion review.

    Get PDF
    Abstract Objectives Results can vary between different free thyroxine (FT4) assays; global standardization would improve comparability of results between laboratories, allowing development of common clinical decision limits in evidence-based guidelines. Content We summarize the path to standardization of FT4 assays, and challenges associated with FT4 testing in special populations, including the need for collaborative efforts toward establishing population-specific reference intervals. The International Federation of Clinical Chemistry and Laboratory Medicine Committee for Standardization of Thyroid Function Tests has undertaken FT4 immunoassay method comparison and recalibration studies and developed a reference measurement procedure that is currently being validated. Further studies are needed to establish common reference intervals/clinical decision limits. Standardization of FT4 assays will change test results substantially; therefore, a major education program will be required to ensure stakeholders are aware of the benefits of FT4 standardization, planned transition procedure, and potential clinical impact of the changes. Assay recalibration by manufacturers and approval process simplification by regulatory authorities will help minimize the clinical impact of standardization. Summary Significant progress has been made toward standardization of FT4 testing, but technical and logistical challenges remain. Outlook Collaborative efforts by manufacturers, laboratories, and clinicians are required to achieve successful global standardization of the FT4 assays

    Reference intervals comparison of calculation methods and evaluation of procedures for merging reference measurements fromTwo US medical centers

    Get PDF
    Objectives: To analyze consistency of reference limits and widths of reference intervals (RIs) calculated by six procedures and evaluate a protocol for merging intrainstitutional reference data. Methods: The differences between reference limits were compared with "optimal" bias goals. Also, widths of the RIs were compared. RIs were calculated using Mayo-SAS quantile, EP Evaluator, and four International Federation of Clinical Chemistry and Laboratory Medicine methods: parametric and nonparametric (NP) with and without latent abnormal values exclusion (LAVE). Regression parameters from cotested samples were evaluated for harmonizing intrainstitutional reference data. Results: Mayo-SAS quintile, LAVE(-) NP, and EP Evaluator generated similar RIs, but these RIs often were wider than RIs from parametric procedures. LAVE procedures generated narrower RIs for nutritional and inflammatory markers. Transformation with regression parameters did not ensure homogeneity of merged data. Conclusions: Parametric methods are recommended when inappropriate values cannot be excluded. The nonparametric procedures may generate wider RIs. Data sets larger than 200 are recommended for robust estimates. Caution should be exercised when merging intrainstitutional data

    Reggies/flotillins interact with Rab11a and SNX4 at the tubulovesicular recycling compartment and function in transferrin receptor and E-cadherin trafficking.

    Get PDF
    The lipid raft proteins reggie-1 and -2 (flotillins) are implicated in membrane protein trafficking but exactly how has been elusive. We find that reggie-1 and -2 associate with the Rab11a, SNX4, and EHD1-decorated tubulovesicular recycling compartment in HeLa cells and that reggie-1 directly interacts with Rab11a and SNX4. Short hairpin RNA-mediated down-regulation of reggie-1 (and -2) in HeLa cells reduces association of Rab11a with tubular structures and impairs recycling of the transferrin-transferrin receptor (TfR) complex to the plasma membrane. Overexpression of constitutively active Rab11a rescues TfR recycling in reggie-deficient HeLa cells. Similarly, in a Ca(2+) switch assay in reggie-depleted A431 cells, internalized E-cadherin is not efficiently recycled to the plasma membrane upon Ca(2+) repletion. E-cadherin recycling is rescued, however, by overexpression of constitutively active Rab11a or SNX4 in reggie-deficient A431 cells. This suggests that the function of reggie-1 in sorting and recycling occurs in association with Rab11a and SNX4. Of interest, impaired recycling in reggie-deficient cells leads to de novo E-cadherin biosynthesis and cell contact reformation, showing that cells have ways to compensate the loss of reggies. Together our results identify reggie-1 as a regulator of the Rab11a/SNX4-controlled sorting and recycling pathway, which is, like reggies, evolutionarily conserved
    corecore