3 research outputs found

    Transcription factor PU.1 is a target of 5-azacitidine during differentiation therapy of myelodysplastic syndrome

    No full text
    PU.1 is a key hematopoietic transcription factor. Knock-out of PU.1 in mouse is embryonic lethal due to complete depletion or several disruption of differentiation of multiple blood cell lineages. Low level of PU.1 and the disruption of its regulation are associated in vivo with acute myeloid leukemia and other hematologic malignancies. Myelodysplastic syndrome (MDS) is hematopoietic stem cell disorder with extremely heterogeneous features and outcome. It is characterized by improper differentiation of blood cells resulting in loss of function, dysplasia and blasts accumulation in bone marrow. About one third of MDS cases transforms into AML. MDS is also characterized by silencing of gene expression caused by aberrant DNA hypermethylation. Using DNA Methyltransferase inhibitors (DNMTi) such as 5-azacitidine (AZA) has good clinical results for the MDS patients with higher risk of disease. Indeed, AZA became standard therapy of high risk MDS in recent years. Nonetheless, our understanding of molecular mechanisms of AZA remains incomplete. This PhD thesis reports about the role of transcription factor PU.1 in MDS. We found that significant subset of high risk MDS patients express low level of PU.1 due to DNA hypermethylation of PU.1 upstream regulatory element (URE). We also found significant..

    Transcription factor PU.1 is a target of 5-azacitidine during differentiation therapy of myelodysplastic syndrome

    Get PDF
    PU.1 is a key hematopoietic transcription factor. Knock-out of PU.1 in mouse is embryonic lethal due to complete depletion or several disruption of differentiation of multiple blood cell lineages. Low level of PU.1 and the disruption of its regulation are associated in vivo with acute myeloid leukemia and other hematologic malignancies. Myelodysplastic syndrome (MDS) is hematopoietic stem cell disorder with extremely heterogeneous features and outcome. It is characterized by improper differentiation of blood cells resulting in loss of function, dysplasia and blasts accumulation in bone marrow. About one third of MDS cases transforms into AML. MDS is also characterized by silencing of gene expression caused by aberrant DNA hypermethylation. Using DNA Methyltransferase inhibitors (DNMTi) such as 5-azacitidine (AZA) has good clinical results for the MDS patients with higher risk of disease. Indeed, AZA became standard therapy of high risk MDS in recent years. Nonetheless, our understanding of molecular mechanisms of AZA remains incomplete. This PhD thesis reports about the role of transcription factor PU.1 in MDS. We found that significant subset of high risk MDS patients express low level of PU.1 due to DNA hypermethylation of PU.1 upstream regulatory element (URE). We also found significant..
    corecore