148 research outputs found
Sterilization of lung matrices by supercritical carbon dioxide
Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO(2)) that can achieve a sterility assurance level 10(−6) in decellularized lung matrix. The effects of ScCO(2) treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO(2) did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO(2), indicating that ScCO(2) produces a matrix that is stable during storage. The current study's results indicate that ScCO(2) can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes
Influence of pH on Extracellular Matrix Preservation During Lung Decellularization
The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results
Bioengineered lungs generated from human iPSCs‐derived epithelial cells on native extracellular matrix
The development of an alternative source for donor lungs would change the paradigm of lung transplantation. Recent studies have demonstrated the potential feasibility of using decellularized lungs as scaffolds for lung tissue regeneration and subsequent implantation. However, finding a reliable cell source and the ability to scale up for recellularization of the lung scaffold still remain significant challenges. To explore the possibility of regeneration of human lung tissue from stem cells in vitro, populations of lung progenitor cells were generated from human iPSCs. To explore the feasibility of producing engineered lungs from stem cells, we repopulated decellularized human lung and rat lungs with iPSC‐derived epithelial progenitor cells. The iPSCs‐derived epithelial progenitor cells lined the decellularized human lung and expressed most of the epithelial markers when were cultured in a lung bioreactor system. In decellularized rat lungs, these human‐derived cells attach and proliferate in a manner similar to what was observed in the decellularized human lung. Our results suggest that repopulation of lung matrix with iPSC‐derived lung epithelial cells may be a viable strategy for human lung regeneration and represents an important early step toward translation of this technology.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/1/term2589.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142929/2/term2589_am.pd
Fate of Distal Lung Epithelium Cultured in a Decellularized Lung Extracellular Matrix
Type II cells are the defenders of the alveolus. They produce surfactant to prevent alveolar collapse, they actively transport water to prevent filling of the air sacs that would otherwise prevent gas exchange, and they differentiate to type I epithelial cells. They are an indispensable component of functional lung tissue. To understand the functionality of type II cells in isolation, we sought to track their fate in decellularized matrices and to assess their ability to contribute to barrier function by differentiation to type I alveolar epithelial cells. Rat type II cells were isolated from neonatal rat lungs by labeling with the RTII-70 surface marker and separation using a magnetic column. This produced a population of ∼50% RTII-70-positive cells accompanied by few type I epithelial cells or α-actin-positive mesenchymal cells. This population was seeded into decellularized rat lung matrices and cultured for 1 or 7 days. Culture in Dulbecco's modified Eagle's medium +10% fetal bovine serum (FBS) resulted in reduced expression of epithelial markers and increased expression of mesenchymal markers. By 7 days, no epithelial markers were visible by immunostaining; nearly all cells were α-actin positive. Gene expression for the mesenchymal markers, α-actin, vimentin, and TGF-βR, was significantly upregulated on day 1 (p=0.0005, 0.0005, and 2.342E-5, respectively). Transcript levels of α-actin and TGF-βR remained high at 7 days (p=1.364E-10 and 0.0002). Interestingly, human type II cells cultured under the same conditions showed a similar trend in the loss of epithelial markers, but did not display high expression of mesenchymal markers. Rat cells additionally showed the ability to produce and degrade the basement membrane and extracellular matrix components, such as fibronectin, collagen IV, and collagen I. Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) showed significant increases in expression of the fibronectin and matrix metalloprotease-2 (MMP-2) genes after 1 day in culture (p=0.0135 and 0.0128, respectively) and elevated collagen I expression at 7 days (p=0.0016). These data suggest that the original type II-enriched population underwent a transition to increased expression of mesenchymal markers, perhaps as part of a survival or wound-healing program. These results suggest that additional medium components and/or the application of physiologically appropriate stimuli such as ventilation may be required to promote lung-specific epithelial phenotypes
Image quality of microcalcifications in digital breast tomosynthesis: Effects of projection-view distributions
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98731/1/MPH005703.pd
Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix
The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII–like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium
Practice of ALARA in the pediatric interventional suite
As interventional procedures have become progressively more sophisticated and lengthy, the potential for high patient radiation dose has increased. Staff exposure arises from patient scatter, so steps to minimize patient dose will in turn reduce operator and staff dose. The practice of ALARA in an interventional radiology (IR) suite, therefore, requires careful attention to technical detail in order to reduce patient dose. The choice of imaging modality should minimize radiation when and where possible. In this paper practical steps are outlined to reduce patient dose. Further details are included that specifically reduce operator exposure. Challenges unique to pediatric intervention are reviewed. Reference is made to experience from modern pediatric interventional suites. Given the potential for high exposures, the practice of ALARA is a team responsibility. Various measures are outlined for consideration when implementing a quality assurance (QA) program for an IR service
Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes.
There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway
Image Processing Algorithms for Digital Mammography: A Pictorial Essay
Digital mammography systems allow manipulation of fine differences in image contrast by means of image processing algorithms. Different display algorithms have advantages and disadvantages for the specific tasks required in breast imaging—diagnosis and screening. Manual intensity windowing can produce digital mammograms very similar to standard screen-film mammograms but is limited by its operator dependence. Histogram-based intensity windowing improves the conspicuity of the lesion edge, but there is loss of detail outside the dense parts of the image. Mixture-model intensity windowing enhances the visibility of lesion borders against the fatty background, but the mixed parenchymal densities abutting the lesion may be lost. Contrast-limited adaptive histogram equalization can also provide subtle edge information but might degrade performance in the screening setting by enhancing the visibility of nuisance information. Unsharp masking enhances the sharpness of the borders of mass lesions, but this algorithm may make even an indistinct mass appear more circumscribed. Peripheral equalization displays lesion details well and preserves the peripheral information in the surrounding breast, but there may be flattening of image contrast in the nonperipheral portions of the image. Trex processing allows visualization of both lesion detail and breast edge information but reduces image contrast
Effect of Strain Magnitude on the Tissue Properties of Engineered Cardiovascular Constructs
Mechanical loading is a powerful regulator of tissue properties in engineered cardiovascular tissues. To ultimately regulate the biochemical processes, it is essential to quantify the effect of mechanical loading on the properties of engineered cardiovascular constructs. In this study the Flexercell FX-4000T (Flexcell Int. Corp., USA) straining system was modified to simultaneously apply various strain magnitudes to individual samples during one experiment. In addition, porous polyglycolic acid (PGA) scaffolds, coated with poly-4-hydroxybutyrate (P4HB), were partially embedded in a silicone layer to allow long-term uniaxial cyclic mechanical straining of cardiovascular engineered constructs. The constructs were subjected to two different strain magnitudes and showed differences in biochemical properties, mechanical properties and organization of the microstructure compared to the unstrained constructs. The results suggest that when the tissues are exposed to prolonged mechanical stimulation, the production of collagen with a higher fraction of crosslinks is induced. However, straining with a large strain magnitude resulted in a negative effect on the mechanical properties of the tissue. In addition, dynamic straining induced a different alignment of cells and collagen in the superficial layers compared to the deeper layers of the construct. The presented model system can be used to systematically optimize culture protocols for engineered cardiovascular tissues
- …