35 research outputs found

    Allele-specific transcriptional elongation regulates monoallelic expression of the IGF2BP1 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Random monoallelic expression contributes to phenotypic variation of cells and organisms. However, the epigenetic mechanisms by which individual alleles are randomly selected for expression are not known. Taking cues from chromatin signatures at imprinted gene loci such as the insulin-like growth factor 2 gene 2 (<it>IGF2</it>), we evaluated the contribution of CTCF, a zinc finger protein required for parent-of-origin-specific expression of the <it>IGF2 </it>gene, as well as a role for allele-specific association with DNA methylation, histone modification and RNA polymerase II.</p> <p>Results</p> <p>Using array-based chromatin immunoprecipitation, we identified 293 genomic loci that are associated with both CTCF and histone H3 trimethylated at lysine 9 (H3K9me3). A comparison of their genomic positions with those of previously published monoallelically expressed genes revealed no significant overlap between allele-specifically expressed genes and colocalized CTCF/H3K9me3. To analyze the contributions of CTCF and H3K9me3 to gene regulation in more detail, we focused on the monoallelically expressed <it>IGF2BP1 </it>gene. <it>In vitro </it>binding assays using the CTCF target motif at the <it>IGF2BP1 </it>gene, as well as allele-specific analysis of cytosine methylation and CTCF binding, revealed that CTCF does not regulate mono- or biallelic <it>IGF2BP1 </it>expression. Surprisingly, we found that RNA polymerase II is detected on both the maternal and paternal alleles in B lymphoblasts that express <it>IGF2BP1 </it>primarily from one allele. Thus, allele-specific control of RNA polymerase II elongation regulates the allelic bias of <it>IGF2BP1 </it>gene expression.</p> <p>Conclusions</p> <p>Colocalization of CTCF and H3K9me3 does not represent a reliable chromatin signature indicative of monoallelic expression. Moreover, association of individual alleles with both active (H3K4me3) and silent (H3K27me3) chromatin modifications (allelic bivalent chromatin) or with RNA polymerase II also fails to identify monoallelically expressed gene loci. The selection of individual alleles for expression occurs in part during transcription elongation.</p

    Formation of Chimeric Genes by Copy-Number Variation as a Mutational Mechanism in Schizophrenia

    Get PDF
    Chimeric genes can be caused by structural genomic rearrangements that fuse together portions of two different genes to create a novel gene. We hypothesize that brain-expressed chimeras may contribute to schizophrenia. Individuals with schizophrenia and control individuals were screened genome wide for copy-number variants (CNVs) that disrupted two genes on the same DNA strand. Candidate events were filtered for predicted brain expression and for frequency < 0.001 in an independent series of 20,000 controls. Four of 124 affected individuals and zero of 290 control individuals harbored such events (p = 0.002); a 47 kb duplication disrupted MATK and ZFR2, a 58 kb duplication disrupted PLEKHD1 and SLC39A9, a 121 kb duplication disrupted DNAJA2 and NETO2, and a 150 kb deletion disrupted MAP3K3 and DDX42. Each fusion produced a stable protein when exogenously expressed in cultured cells. We examined whether these chimeras differed from their parent genes in localization, regulation, or function. Subcellular localizations of DNAJA2-NETO2 and MAP3K3-DDX42 differed from their parent genes. On the basis of the expression profile of the MATK promoter, MATK-ZFR2 is likely to be far more highly expressed in the brain during development than the ZFR2 parent gene. MATK-ZFR2 includes a ZFR2-derived isoform that we demonstrate localizes preferentially to neuronal dendritic branch sites. These results suggest that the formation of chimeric genes is a mechanism by which CNVs contribute to schizophrenia and that, by interfering with parent gene function, chimeras may disrupt critical brain processes, including neurogenesis, neuronal differentiation, and dendritic arborization

    Genetic etiologies of Autism Spectrum Disorder

    No full text
    Thesis (Ph.D.)--University of Washington, 2014Autism spectrum disorder (ASD) is a common, heritable neurodevelopmental disorder. In this thesis, I examine how different genetic etiologies, mutation types and specific genes contribute to the risk of ASD, and how these factors can be used to expand our understanding of the neurobiological underpinnings of ASD. I develop a new bioinformatics method (CoNIFER: Copy Number Inference from Exome Reads) to identify Copy Number Variants (CNVs) using exome sequencing data, enabling much more sensitive identification of a previously under-ascertained class of small CNVs (de novo and inherited rare CNVs and can predict absolute copy number for loci with fewer than eight copies. Next, I searched for disruptive, genic rare CNVs among 411 families with sporadic ASD from the Simons Simplex Collection and identified additional small genic rare CNVs compared to high-density SNP microarrays (~2x higher yield). I found that affected probands inherit more CNVs than their siblings (p=0.004; OR=1.19), and these CNVs affect more genes, are enriched for brain-expressed genes, and are transmitted preferentially from the mother. I found that the excess burden of inherited CNVs among probands is driven primarily by sib-pairs with discordant social behavior phenotypes. Next, I created a combined set of both inherited and de novo Single Nucleotide Variants (SNVs) and CNVs across 2,377 Simons Simplex Collection (SSC) ASD families, including 1,786 families with both an affected and unaffected child. I compared the burden of inherited and de novo mutations between affected and unaffected siblings and found that private inherited truncating SNV mutations in conserved genes are significantly enriched in probands (OR=1.14, p de novo and inherited CNVs and SNVs by using a conditional logistic regression model. Independent from de novo mutations, private truncating SNVs and rare inherited CNVs contribute an increase in risk of 1.11 (p=0.0002) and 1.23 (p = 0.01), respectively. These results confirm a statistically independent role for inherited mutations in ASD risk and identify additional candidate genes (eg. RIMS1, CUL7 and CSMD1) where inherited and de novo burden converge

    Allele-specific transcriptional elongation regulates monoallelic expression of the igf2bp1 gene

    No full text
    Background: Random monoallelic expression contributes to phenotypic variation of cells and organisms. However, the epigenetic mechanisms by which individual alleles are randomly selected for expression are not known. Taking cues from chromatin signatures at imprinted gene loci such as the insulin-like growth factor 2 gene 2 (IGF2), we evaluated the contribution of CTCF, a zinc finger protein required for parent-of-origin-specific expression of the IGF2 gene, as well as a role for allele-specific association with DNA methylation, histone modification and RNA polymerase II. Results: Using array-based chromatin immunoprecipitation, we identified 293 genomic loci that are associated with both CTCF and histone H3 trimethylated at lysine 9 (H3K9me3). A comparison of their genomic positions with those of previously published monoallelically expressed genes revealed no significant overlap between allele-specifically expressed genes and colocalized CTCF/H3K9me3. To analyze the contributions of CTCF and H3K9me3 to gene regulation in more detail, we focused on the monoallelically expressed IGF2BP1 gene. In vitro binding assays using the CTCF target motif at the IGF2BP1 gene, as well as allele-specific analysis of cytosine methylation and CTCF binding, revealed that CTCF does not regulate mono-or biallelic IGF2BP1 expression. Surprisingly, we found that RNA polymerase II is detected on both the maternal and paternal alleles in B lymphoblasts that express IGF2BP1 primarily from one allele. Thus, allele-specific control of RNA polymerase II elongation regulates the allelic bias of IGF2BP1 gene expression. Conclusions: Colocalization of CTCF and H3K9me3 does not represent a reliable chromatin signature indicative of monoallelic expression. Moreover, association of individual alleles with both active (H3K4me3) and silent (H3K27me3) chromatin modifications (allelic bivalent chromatin) or with RNA polymerase II also fails to identify monoallelically expressed gene loci. The selection of individual alleles for expression occurs in part during transcription elongation

    Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy

    No full text
    BACKGROUND- Familial dilated cardiomyopathy (DCM) is a genetically heterogeneous disease with &gt;30 known genes. TTN truncating variants were recently implicated in a candidate gene study to cause 25% of familial and 18% of sporadic DCM cases. METHODS AND RESULTS- We used an unbiased genome-wide approach using both linkage analysis and variant filtering across the exome sequences of 48 individuals affected with DCM from 17 families to identify genetic cause. Linkage analysis ranked the TTN region as falling under the second highest genome-wide multipoint linkage peak, multipoint logarithm of odds, 1.59. We identified 6 TTN truncating variants carried by individuals affected with DCM in 7 of 17 DCM families (logarithm of odds, 2.99); 2 of these 7 families also had novel missense variants that segregated with disease. Two additional novel truncating TTN variants did not segregate with DCM. Nucleotide diversity at the TTN locus, including missense variants, was comparable with 5 other known DCM genes. The average number of missense variants in the exome sequences from the DCM cases or the ≈5400 cases from the Exome Sequencing Project was ≈23 per individual. The average number of TTN truncating variants in the Exome Sequencing Project was 0.014 per individual. We also identified a region (chr9q21.11-q22.31) with no known DCM genes with a maximum heterogeneity logarithm of odds score of 1.74. CONCLUSIONS- These data suggest that TTN truncating variants contribute to DCM cause. However, the lack of segregation of all identified TTN truncating variants illustrates the challenge of determining variant pathogenicity even with full exome sequencing

    A higher mutational burden in females supports a "female protective model" in neurodevelopmental disorders.

    Get PDF
    Increased male prevalence has been repeatedly reported in several neurodevelopmental disorders (NDs), leading to the concept of a "female protective model." We investigated the molecular basis of this sex-based difference in liability and demonstrated an excess of deleterious autosomal copy-number variants (CNVs) in females compared to males (odds ratio [OR] = 1.46, p = 8 × 10(-10)) in a cohort of 15,585 probands ascertained for NDs. In an independent autism spectrum disorder (ASD) cohort of 762 families, we found a 3-fold increase in deleterious autosomal CNVs (p = 7 × 10(-4)) and an excess of private deleterious single-nucleotide variants (SNVs) in female compared to male probands (OR = 1.34, p = 0.03). We also showed that the deleteriousness of autosomal SNVs was significantly higher in female probands (p = 0.0006). A similar bias was observed in parents of probands ascertained for NDs. Deleterious CNVs (&gt;400 kb) were maternally inherited more often (up to 64%, p = 10(-15)) than small CNVs &lt; 400 kb (OR = 1.45, p = 0.0003). In the ASD cohort, increased maternal transmission was also observed for deleterious CNVs and SNVs. Although ASD females showed higher mutational burden and lower cognition, the excess mutational burden remained, even after adjustment for those cognitive differences. These results strongly suggest that females have an increased etiological burden unlinked to rare deleterious variants on the X chromosome. Carefully phenotyped and genotyped cohorts will be required for identifying the symptoms, which show gender-specific liability to mutational burden
    corecore