32 research outputs found

    In vivo regulation of autoreactive B cells by IL-6, CD40L and TNFα

    Get PDF
    Polyclonal B cell activation is essential to an effective innate immune response. However, autoreactive B cells must not be included in the polyclonal response to avoid autoimmunity. We have shown that IL-6 and CD40L secreted by TLR-stimulated dendritic cells (DCs) and macrophages (MΦs) selectively repress LPS-induced Ig secretion by autoreactive B cells. Here we introduce a third soluble factor involved in DC/MΦ-mediated B cell repression, TNFα. Like IL-6 and CD40L, DCs and MΦs derived from lupus-prone MRL/lpr mice secrete less TNFα in response to TLR stimulation than DCs and MΦs from C57BL/6 mice, suggesting secretion of TNFα by DCs/MΦs may have a role in autoimmune disease. We further demonstrate in an in vivo model that IL-6, CD40L and TNFα regulate LPS-stimulated autoreactive B cells, while mice lacking these factors do not. Our data indicate that IL-6, CD40L and TNFα mediate in vitro and in vivo autoreactive B cell repression during innate immune responses

    YaxAB, a Yersinia enterocolitica Pore-Forming Toxin Regulated by RovA

    Get PDF
    ABSTRACT The transcriptional regulator RovA positively regulates transcription of the Yersinia enterocolitica virulence gene inv . Invasin, encoded by inv , is important for establishment of Y. enterocolitica infection. However, a rovA mutant is more attenuated for virulence than an inv mutant, implying that RovA regulates additional virulence genes. When the Y. enterocolitica RovA regulon was defined by microarray analysis, YE1984 and YE1985 were among the genes identified as being upregulated by RovA. Since these genes are homologous to Xenorhabdus nematophila cytotoxin genes xaxA and xaxB , we named them yaxA and yaxB , respectively. In this work, we demonstrate the effects of YaxAB on the course of infection in the murine model. While a yaxAB mutant (Δ yaxAB ) is capable of colonizing mice at the same level as the wild type, it slightly delays the course of infection and results in differing pathology in the spleen. Further, we found that yaxAB encode a probable cytotoxin capable of lysing mammalian cells, that both YaxA and YaxB are required for cytotoxic activity, and that the two proteins associate. YaxAB-mediated cell death occurs via osmotic lysis through the formation of distinct membrane pores. In silico tertiary structural analysis identified predicted structural homology between YaxA and proteins in pore-forming toxin complexes from Bacillus cereus (HBL-B) and Escherichia coli (HlyE). Thus, it appears that YaxAB function as virulence factors by inducing cell lysis through the formation of pores in the host cell membrane. This characterization of YaxAB supports the hypothesis that RovA regulates expression of multiple virulence factors in Y. enterocolitica

    Increased Hematopoietic Cells in the mertk-/- Mouse Peritoneal Cavity: A Result of Augmented Migration

    Get PDF
    The peritoneal cavity is recognized as an important site for autoreactive B cells prior to their transit to other immune tissues; however, little is known of the genes that may regulate this process. Mice lacking the receptor tyrosine kinase Mertk display a lupus-like autoimmune phenotype with splenomegaly and high autoantibodies titers. Here, we investigate whether Mertk regulates the composition of peritoneal cells that favor an autoimmune phenotype. We found an increase in the number of macrophages, DC, plasmacytoid DC, T cells and B cells in the peritoneal cavity of mertk−/− mice when compared to wild-type mice. This disparity in cell numbers was not due to changes in cell proliferation or cell death. In adoptive transfer experiments, we showed an increase in migration of labeled donor cells into the mertk−/− peritoneal cavity. In addition, bone marrow chimeric mice showed hematopoietic-derived factors were also critical for T cell migration. Consistent with this migration and the increase in the number of cells, we identified elevated expression of CXCL9, its receptor CXCR3, and IL-7 receptor on peritoneal cells from mertk−/− mice. To corroborate the migratory function of CXCR3 on cells, the depletion of CXCR3 donor cells significantly reduced the number of adoptively transferred cells that entered into the peritoneum of mertk−/− mice. This control of peritoneal cells numbers correlated with autoantibody production and was exclusively attributed to Mertk since mice lacking other family members, Axl or Tyro 3, did not display dysregulation in peritoneal cell numbers or the autoimmune phenotype

    Receptor Cross-Talk Spatially Restricts p-ERK during TLR4 Stimulation of Autoreactive B Cells

    Get PDF
    To maintain tolerance, autoreactive B cells must regulate signal transduction from the B cell receptor and Toll-like receptors. We recently identified that dendritic cells and macrophages regulate autoreactive cells during TLR4 activation by releasing IL-6 and soluble CD40L (sCD40L). These cytokines selectively repress antibody secretion from autoreactive, but not antigenically naïve, B cells. How IL-6 and sCD40L repress autoantibody production is unknown. In this paper, we show that IL-6 and sCD40L are required for low-affinity/avidity autoreactive B cells to maintain tolerance through a mechanism involving receptor crosstalk between the BCR, TLR4, and the IL-6 receptor or CD40. We show that acute signaling through IL-6 receptor or CD40 integrates with chronic BCR-mediated ERK activation to restrict pERK from the nucleus and repress TLR4-induced Blimp-1 and XBP-1 expression. Tolerance is disrupted in 2-12H/MRL/lpr mice where IL-6 and sCD40L fail to spatially restrict pERK and fail to repress TLR4-induced Ig secretion. In the case of CD40, acute signaling in B cells from 2-12H/MRL/lpr mice is intact, but the chronic activation of pERK emanating from the BCR is attenuated. Re-establishing chronically active ERK through retroviral expression of constitutively active MEK1 restores tolerance upon sCD40L, but not IL-6, stimulation indicating that regulation by IL-6 requires another signaling effector. These data define the molecular basis for the regulation of low-affinity autoreactive B cells during TLR4 stimulation, they explain how autoreactive but not naïve B cells are repressed by IL-6 and sCD40L, and they identify B cell defects in lupus-prone mice that lead to TLR4-induced autoantibody production

    Study protocol: Audit and Best Practice for Chronic Disease Extension (ABCDE) Project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing body of international literature points to the importance of a system approach to improve the quality of care in primary health care settings. Continuous Quality Improvement (CQI) concepts and techniques provide a theoretically coherent and practical way for primary care organisations to identify, address, and overcome the barriers to improvements. The Audit and Best Practice for Chronic Disease (ABCD) study, a CQI-based quality improvement project conducted in Australia's Northern Territory, has demonstrated significant improvements in primary care service systems, in the quality of clinical service delivery and in patient outcomes related to chronic illness care. The aims of the extension phase of this study are to examine factors that influence uptake and sustainability of this type of CQI activity in a variety of Indigenous primary health care organisations in Australia, and to assess the impact of collaborative CQI approaches on prevention and management of chronic illness and health outcomes in Indigenous communities.</p> <p>Methods/design</p> <p>The study will be conducted in 40–50 Indigenous community health centres from 4 States/Territories (Northern Territory, Western Australia, New South Wales and Queensland) over a five year period. The project will adopt a participatory, quality improvement approach that features annual cycles of: 1) organisational system assessment and audits of clinical records; 2) feedback to and interpretation of results with participating health centre staff; 3) action planning and goal setting by health centre staff to achieve system changes; and 4) implementation of strategies for change. System assessment will be carried out using a System Assessment Tool and in-depth interviews of key informants. Clinical audit tools include two essential tools that focus on diabetes care audit and preventive service audit, and several optional tools focusing on audits of hypertension, heart disease, renal disease, primary mental health care and health promotion.</p> <p>The project will be carried out in a form of collaborative characterised by a sequence of annual learning cycles with action periods for CQI activities between each learning cycle.</p> <p>Key outcome measures include uptake and integration of CQI activities into routine service activity, state of system development, delivery of evidence-based services, intermediate patient outcomes (e.g. blood pressure and glucose control), and health outcomes (complications, hospitalisations and mortality).</p> <p>Conclusion</p> <p>The ABCD Extension project will contribute directly to the evidence base on effectiveness of collaborative CQI approaches on prevention and management of chronic disease in Australia's Indigenous communities, and to inform the operational and policy environments that are required to incorporate CQI activities into routine practice.</p

    Autoreactive Preplasma Cells Break Tolerance in the Absence of Regulation by Dendritic Cells and Macrophages

    Get PDF
    The ability to induce antibody responses to pathogens while maintaining the quiescence of autoreactive cells is an important aspect of immune tolerance. During activation of Toll-like receptor-4 (TLR4), dendritic cells (DCs) and macrophages (MFs) repress autoantibody production through their secretion of IL-6 and soluble CD40L (sCD40L). These soluble mediators selectively repress B cells chronically exposed to antigen, but not naïve cells, suggesting a means to maintain tolerance during TLR4 stimulation, yet allow immunity. In this study, we identify TNFα as a third repressive factor, which together with IL-6 and CD40L, account for nearly all the repression conferred by DCs and MFs. Like IL-6 and sCD40L, TNFα did not alter B cell proliferation or survival. Rather, it reduced the number of antibody secreting cells. To address whether the soluble mediators secreted by DCs and MFs functioned in vivo, we generated mice lacking IL-6, CD40L and TNFα. Compared to wildtype mice, these mice showed prolonged anti-nuclear antibody responses following TLR4 stimulation. Further, adoptive transfer of autoreactive B cells into chimeric IL-6-/- × CD40L-/- × TNFα-/- mice showed that pre-plasma cells secreted autoantibodies independent of germinal center formation or extrafollicular foci. These data indicate that in the absence of genetic predisposition to autoimmunity, loss of endogenous IL-6, CD40L, and TNFα promotes autoantibody secretion during TLR4 stimulation

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Dissemination of a Highly Virulent Pathogen: Tracking The Early Events That Define Infection

    Get PDF
    <div><p>The series of events that occurs immediately after pathogen entrance into the body is largely speculative. Key aspects of these events are pathogen dissemination and pathogen interactions with the immune response as the invader moves into deeper tissues. We sought to define major events that occur early during infection of a highly virulent pathogen. To this end, we tracked early dissemination of <i>Yersinia pestis</i>, a highly pathogenic bacterium that causes bubonic plague in mammals. Specifically, we addressed two fundamental questions: (1) do the bacteria encounter barriers in disseminating to draining lymph nodes (LN), and (2) what mechanism does this nonmotile bacterium use to reach the LN compartment, as the prevailing model predicts trafficking in association with host cells. Infection was followed through microscopy imaging in addition to assessing bacterial population dynamics during dissemination from the skin. We found and characterized an unexpected bottleneck that severely restricts bacterial dissemination to LNs. The bacteria that do not pass through this bottleneck are confined to the skin, where large numbers of neutrophils arrive and efficiently control bacterial proliferation. Notably, bottleneck formation is route dependent, as it is abrogated after subcutaneous inoculation. Using a combination of approaches, including microscopy imaging, we tested the prevailing model of bacterial dissemination from the skin into LNs and found no evidence of involvement of migrating phagocytes in dissemination. Thus, early stages of infection are defined by a bottleneck that restricts bacterial dissemination and by neutrophil-dependent control of bacterial proliferation in the skin. Furthermore, and as opposed to current models, our data indicate an intracellular stage is not required by <i>Y. pestis</i> to disseminate from the skin to draining LNs. Because our findings address events that occur during early encounters of pathogen with the immune response, this work can inform efforts to prevent or control infection.</p></div

    How reliable is perioperative anticoagulant management? Determining guideline compliance and practice variation by a retrospective patient record review

    No full text
    Objectives Surgery in patients on anticoagulants requires careful monitoring and risk assessment to prevent harm. Required interruptions of anticoagulants and deciding whether to use bridging anticoagulation add further complexity. This process, known as perioperative anticoagulant management (PAM), is optimised by using guidelines. Optimal PAM prevents thromboembolic and bleeding complications. The purpose of this study was to assess the reliability of PAM practice in Dutch hospitals. Additionally, the variations between hospitals and different bridging dosages were studied. Design A multicentre retrospective patient record review. Setting and participants Records from 268 patients using vitamin-K antagonist (VKA) anticoagulants who underwent surgery in a representative random sample of 13 Dutch hospitals were reviewed, 259 were analysed. Primary and secondary outcome measures Our primary outcome measure was the reliability of PAM expressed as the percentage of patients receiving guideline compliant care. Seven PAM steps were included. Secondary outcome measures included different bridging dosages used and an analysis of practice variation on the hospital level. Results Preoperative compliance was lowest for timely VKA interruptions: 58.8% (95% CI 50.0% to 67.7%) and highest for timely preoperative assessments: 81% (95% CI 75.0% to 86.5%). Postoperative compliance was lowest for timely VKA restarts: 39.9% (95% CI 33.1% to 46.7%) and highest for the decision to apply bridging: 68.5% (95% CI 62.3% to 74.8%). Variation in compliance between hospitals was present for the timely preoperative assessment (range 41%-100%), international normalised ratio testing (range 21%-94%) and postoperative bridging (range 20%-88%). Subtherapeutic bridging was used in 50.5% of patients and increased with patients' weight. Conclusions Unsatisfying compliance for most PAM steps, reflect suboptimal reliability of PAM. Furthermore, the hospital performance varied. This increases the risk for adverse events, warranting quality improvement. The development of process measures can help but will be complicated by the availability of a strong supporting evidence base and integrated care delivery regarding PAM
    corecore