15 research outputs found

    Treatment considerations for compulsive exercise in high-performance athletes with an eating disorder

    Get PDF
    Compulsive exercise is linked with poorer treatment outcomes in people with eating disorder (EDs). High-performance athletes represent a growing and complex subcomponent of the broader ED population, and emergent evidence indicates that different conceptualisations of compulsive exercise are needed in this population. Existing randomised controlled trials in ED populations have demonstrated small treatment effects on compulsive exercise compared with control groups; however, athletes were sparsely sampled across these studies. Thus, the extent to which current treatments for compulsive exercise in EDs are also effective in high-performance athletes is unknown. For this opinion paper, we sought representation from high-performance sports leadership, someone with lived experience of both an ED and high-performance athletics, and ED clinical experts. We discuss the utility of recommending exercise abstinence in ED treatment with athletes, as well as a number of other treatment strategies with some evidence in other contexts for further consideration and research in this population. These include using mindfulness-based interventions as an adjunct to cognitive-behavioural therapies, using wearable technologies and self-reported fatigue to inform training decisions, and incorporating greater exercise variation into training programs. We also offer practical considerations for clinicians seeking to apply foundational elements of cognitive-behavioural interventions (e.g., exposure and response prevention, cognitive restructuring, behavioural experiments) into an ED treatment program for a high-performance athlete. Future research is needed to examine characteristics of pathological compulsive exercise in athletes and whether available treatments are both feasible and effective in the treatment of compulsive exercise in athletes with an ED

    Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions

    Get PDF
    Background: Hypohydration and hyperthermia are factors that may contribute to fatigue and impairment of endurance performance. The purpose of this study was to investigate the effectiveness of combining glycerol hyperhydration and an established precooling technique on cycling time trial performance in hot environmental conditions.Methods: Twelve well-trained male cyclists performed three 46.4-km laboratory-based cycling trials that included two climbs, under hot and humid environmental conditions (33.3 ± 1.1°C; 50 ± 6% r.h.). Subjects were required to hyperhydrate with 25 g.kg-1 body mass (BM) of a 4°C beverage containing 6% carbohydrate (CON) 2.5 h prior to the time trial. On two occasions, subjects were also exposed to an established precooling technique (PC) 60 min prior to the time trial, involving 14 g.kg-1 BM ice slurry ingestion and applied iced towels over 30 min. During one PC trial, 1.2 g.kg-1 BM glycerol was added to the hyperhydration beverage in a double-blind fashion (PC+G). Statistics used in this study involve the combination of traditional probability statistics and a magnitude-based inference approach.Results: Hyperhydration resulted in large reductions (-0.6 to -0.7°C) in rectal temperature. The addition of glycerol to this solution also lowered urine output (330 ml, 10%). Precooling induced further small (-0.3°C) to moderate (-0.4°C) reductions in rectal temperature with PC and PC+G treatments, respectively, when compared with CON (0.0°C, P\u3c0.05). Overall, PC+G failed to achieve a clear change in cycling performance over CON, but PC showed a possible 2% (30 s, P=0.02) improvement in performance time on climb 2 compared to CON. This improvement was attributed to subjects\u27 lower perception of effort reported over the first 10 km of the trial, despite no clear performance change during this time. No differences were detected in any other physiological measurements throughout the time trial.Conclusions: Despite increasing fluid intake and reducing core temperature, performance and thermoregulatory benefits of a hyperhydration strategy with and without the addition of glycerol, plus practical precooling, were not superior to hyperhydration alone. Further research is warranted to further refine preparation strategies for athletes competing in thermally stressful events to optimize health and maximize performance outcomes

    Disordered eating in elite youth athletes: A scoping review of studies published since 2000

    No full text
    Objectives: The purpose of this scoping review was to explore what is known about eating disorders and disordered eating in elite youth athletes aged 12–18. This review intended to explore what is known about the prevalence, risk factors, and outcomes of these conditions. Design: Scoping Review. Method: A scoping review was conducted following the Johanna Briggs Institute (JBI) and Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology. Six key databases were searched to identify articles for inclusion: PsycInfo, MEDLINE, CINAHL, SPORTDiscus, Scopus, and Google Scholar. Data was subsequently extracted and summarised in line with the research questions. Results: In total, 21 studies were found that met inclusion criteria. The included studies overwhelmingly focused on girls, European populations, and used a cross-sectional quantitative study design. Where clinical interview was used, there were higher rates of eating disorders among elite youth athletes compared to the general youth population. The most cited risk factors included female gender, leanness sports, and those with higher body mass index. Eating disorders and disordered eating were found to be associated with higher rates of depression and anxiety but there was limited investigation of other associated outcomes. Conclusions: Findings from this review suggest that elite youth athletes are at risk of eating disorders and disordered eating. However, significant limitations in the field exist and further research is needed using clinical interview and population specific screening tools to better understand the prevalence, risk factors and outcomes of disordered eating and eating disorders to support this population

    The validity of ultrasound technology in providing an indirect estimate of muscle glycogen concentrations is equivocal

    Get PDF
    Researchers and practitioners in sports nutrition would greatly benefit from a rapid, portable, and non-invasive technique to measure muscle glycogen, both in the laboratory and field. This explains the interest in MuscleSound®, the first commercial system to use high-frequency ultrasound technology and image analysis from patented cloud-based software to estimate muscle glycogen content from the echogenicity of the ultrasound image. This technique is based largely on muscle water content, which is presumed to act as a proxy for glycogen. Despite the promise of early validation studies, newer studies from independent groups reported discrepant results, with MuscleSound® scores failing to correlate with the glycogen content of biopsy-derived mixed muscle samples or to show the expected changes in muscle glycogen associated with various diet and exercise strategies. The explanation of issues related to the site of assessment do not account for these discrepancies, and there are substantial problems with the premise that the ratio of glycogen to water in the muscle is constant. Although further studies investigating this technique are warranted, current evidence that MuscleSound® technology can provide valid and actionable information around muscle glycogen stores is at best equivocal

    Effects of lowering body temperature via hyperhydration, with and without glycerol ingestion and practical precooling on cycling time trial performance in hot and humid conditions

    No full text
    Abstract Background Hypohydration and hyperthermia are factors that may contribute to fatigue and impairment of endurance performance. The purpose of this study was to investigate the effectiveness of combining glycerol hyperhydration and an established precooling technique on cycling time trial performance in hot environmental conditions. Methods Twelve well-trained male cyclists performed three 46.4-km laboratory-based cycling trials that included two climbs, under hot and humid environmental conditions (33.3 ± 1.1°C; 50 ± 6% r.h.). Subjects were required to hyperhydrate with 25 g.kg-1 body mass (BM) of a 4°C beverage containing 6% carbohydrate (CON) 2.5 h prior to the time trial. On two occasions, subjects were also exposed to an established precooling technique (PC) 60 min prior to the time trial, involving 14 g.kg-1 BM ice slurry ingestion and applied iced towels over 30 min. During one PC trial, 1.2 g.kg-1 BM glycerol was added to the hyperhydration beverage in a double-blind fashion (PC+G). Statistics used in this study involve the combination of traditional probability statistics and a magnitude-based inference approach. Results Hyperhydration resulted in large reductions (−0.6 to −0.7°C) in rectal temperature. The addition of glycerol to this solution also lowered urine output (330 ml, 10%). Precooling induced further small (−0.3°C) to moderate (−0.4°C) reductions in rectal temperature with PC and PC+G treatments, respectively, when compared with CON (0.0°C, P Conclusions Despite increasing fluid intake and reducing core temperature, performance and thermoregulatory benefits of a hyperhydration strategy with and without the addition of glycerol, plus practical precooling, were not superior to hyperhydration alone. Further research is warranted to further refine preparation strategies for athletes competing in thermally stressful events to optimize health and maximize performance outcomes.</p

    Effects of Creatine and Carbohydrate Loading on Cycling Time Trial Performance

    No full text
    Creatine (Cr) and carbohydrate loadings are dietary strategies used to enhance exercise capacity. This study examined the metabolic and performance effects of a combined CR and CHO loading regiment on time trial (TT) cycling bouts. Methods: Eighteen well-trained (~65 mLIkgj1Iminj1 V˙ O2peak) men completed three performance trials (PT) that comprised a 120-km cycling TT interspersed with alternating 1- and 4-km sprints (six sprints each) performed every 10 km followed by an inclined ride to fatigue (~90%V˙ O2peak). Subjects were pair matched into either CR-loaded (20 gIdj1 for 5 d + 3 gIdj1 for 9 d) or placebo (PLA) groups (n = 9) after the completion of PT1. All subjects undertook a crossover application of the carbohydrate interventions, consuming either moderate (6 gIkgj1 body mass (BM) per day; MOD) or CHO-loaded (12 gIkgj1 BMIdj1; LOAD) diets before PT2 and PT3. Muscle biopsies were taken before PT1, 18 h after PT1, and before both PT2 and PT3. Results: No significant differences in overall TT or inclined ride times were observed between intervention groups. PLA + LOAD improved power above baseline (P G 0.05) during the final 1-km sprint, whereas CR + MOD and CR + LOAD improved power (P G 0.05) during the final 4-km sprint. Greater power was achieved with MOD and LOAD compared with baseline with PLA (P G 0.05). CR increased pre-PT BM compared with PLA (+1.54% vs +0.99% from baseline). CR + LOAD facilitated greater [total CR] (P G 0.05 vs baseline) and muscle [glycogen] (P G 0.01 vs baseline and MOD) compared with PLA + LOAD. Mechanistic target of rapamycin decreased from baseline after glycogen depletion (~30%; P G 0.05). Conclusions: Power output in the closing sprints of exhaustive TT cycling increased with CR ingestion despite a CR-mediated increase in weight. CR cosupplemented with carbohydrates may therefore be beneficial strategy for late-stage breakaway moments in endurance events

    Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis

    No full text
    Quantity and timing of protein ingestion are major factors regulating myofibrillar protein synthesis (MPS). However, the effect of specific ingestion patterns on MPS throughout a 12 h period is unknown. We determined how different distributions of protein feeding during 12 h recovery after resistance exercise affects anabolic responses in skeletal muscle. Twenty-four healthy trained males were assigned to three groups (n = 8/group) and undertook a bout of resistance exercise followed by ingestion of 80 g of whey protein throughout 12 h recovery in one of the following protocols: 8 × 10 g every 1.5 h (PULSE); 4 × 20 g every 3 h (intermediate: INT); or 2 × 40 g every 6 h (BOLUS). Muscle biopsies were obtained at rest and after 1, 4, 6, 7 and 12 h post exercise. Resting and post-exercise MPS (l-[ring-(13)C6] phenylalanine), and muscle mRNA abundance and cell signalling were assessed. All ingestion protocols increased MPS above rest throughout 1-12 h recovery (88-148%, P < 0.02), but INT elicited greater MPS than PULSE and BOLUS (31-48%, P < 0.02). In general signalling showed a BOLUS>INT>PULSE hierarchy in magnitude of phosphorylation. MuRF-1 and SLC38A2 mRNA were differentially expressed with BOLUS. In conclusion, 20 g of whey protein consumed every 3 h was superior to either PULSE or BOLUS feeding patterns for stimulating MPS throughout the day. This study provides novel information on the effect of modulating the distribution of protein intake on anabolic responses in skeletal muscle and has the potential to maximize outcomes of resistance training for attaining peak muscle mass

    Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling

    No full text
    We determined the effects of varying daily carbohydrate intake by providing or withholding carbohydrate during daily training on endurance performance, whole body rates of substrate oxidation, and selected mitochondrial enzymes. Sixteen endurance-trained cyclists or triathletes were pair matched and randomly allocated to either a high-carbohydrate group (High group; n = 8) or an energy-matched low-carbohydrate group (Low group; n = 8) for 28 days. Immediately before study commencement and during the final 5 days, subjects undertook a 5-day test block in which they completed an exercise trial consisting of a 100 min of steady-state cycling (100SS) followed by a 7-kJ/kg time trial on two occasions separated by 72 h. In a counterbalanced design, subjects consumed either water (water trial) or a 10% glucose solution (glucose trial) throughout the exercise trial. A muscle biopsy was taken from the vastus lateralis muscle on day 1 of the first test block, and rates of substrate oxidation were determined throughout 100SS. Training induced a marked increase in maximal citrate synthase activity after the intervention in the High group (27 vs. 34 μmol·g⁻¹·min⁻¹, P < 0.001). Tracer-derived estimates of exogenous glucose oxidation during 100SS in the glucose trial increased from 54.6 to 63.6 g (P < 0.01) in the High group with no change in the Low group. Cycling performance improved by ~6% after training. We conclude that altering total daily carbohydrate intake by providing or withholding carbohydrate during daily training in trained athletes results in differences in selected metabolic adaptations to exercise, including the oxidation of exogenous carbohydrate. However, these metabolic changes do not alter the training-induced magnitude of increase in exercise performance
    corecore