25 research outputs found

    Hybrid Nanoparticles for Haloperidol Encapsulation: Quid Est Optimum?

    Get PDF
    The choice of drug delivery carrier is of paramount importance for the fate of a drug in a human body. In this study, we have prepared the hybrid nanoparticles composed of FDA-approved Eudragit L100-55 copolymer and polymeric surfactant Brij98 to load haloperidol-an antipsychotic hydrophobic drug used to treat schizophrenia and many other disorders. This platform shows good drug-loading efficiency and stability in comparison to the widely applied platforms of mesoporous silica (MSN) and a metal-organic framework (MOF). ZIF8, a biocompatible MOF, failed to encapsulate haloperidol, whereas MSN only showed limited encapsulation ability. Isothermal titration calorimetry showed that haloperidol has low binding with the surface of ZIF8 and MSN in comparison to Eudragit L100-55/Brij98, thus elucidating the striking difference in haloperidol loading. With further optimization, the haloperidol loading efficiency could reach up to 40% in the hybrid Eudragit L100-55/Brij98 nanoparticles with high stability over several months. Differential scanning calorimetry studies indicate that the encapsulated haloperidol stays in an amorphous state inside the Eudragit L100-55/Brij98 nanoparticles. Using a catalepsy and open field animal tests, we proved the prolongation of haloperidol release in vivo, resulting in later onset of action compared to the free drug

    H3K4me3, H3K9ac, H3K27ac, H3K27me3 and H3K9me3 Histone Tags Suggest Distinct Regulatory Evolution of Open and Condensed Chromatin Landmarks

    No full text
    Background: Transposons are selfish genetic elements that self-reproduce in host DNA. They were active during evolutionary history and now occupy almost half of mammalian genomes. Close insertions of transposons reshaped structure and regulation of many genes considerably. Co-evolution of transposons and host DNA frequently results in the formation of new regulatory regions. Previously we published a concept that the proportion of functional features held by transposons positively correlates with the rate of regulatory evolution of the respective genes. Methods: We ranked human genes and molecular pathways according to their regulatory evolution rates based on high throughput genome-wide data on five histone modifications (H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K9me3) linked with transposons for five human cell lines. Results: Based on the total of approximately 1.5 million histone tags, we ranked regulatory evolution rates for 25075 human genes and 3121 molecular pathways and identified groups of molecular processes that showed signs of either fast or slow regulatory evolution. However, histone tags showed different regulatory patterns and formed two distinct clusters: promoter/active chromatin tags (H3K4me3, H3K9ac, H3K27ac) vs. heterochromatin tags (H3K27me3, H3K9me3). Conclusion: In humans, transposon-linked histone marks evolved in a coordinated way depending on their functional roles
    corecore