

Moscow International Symposium on Magnetism

1 – 5 July 2017

Book of Abstracts

M.V. Lomonosov Moscow State University, Faculty of Physics

Main Topics

Spintronics and Magnetotransport Magnetophotonics High Frequency Properties and Metamaterials Magnetic Nanostructures and Low Dimensional Magnetism Soft and Hard Magnetic Materials Magnetic Shape-memory Alloys and Magnetocaloric Effect Magnetic Semiconductors and Oxides **Multiferroics** Magnetism and Superconductivity Magnetic Soft Matter Magnetism in Biology and Medicine Study of Magnetism using X-rays and Neutrons Theory Scientific equipment **Topological Insulators** Skyrmions Magnonics Magnetophotonics and Ultrafast Magnetism MRAM

> Editors: N. Perov V. Bessalova A. Kharlamova L. Makarova Yu. Alekhina T. Rusakova

Moscow 2017

2PO-I-36

CONCENTRATION-DEPENDENT ANTIFERROMAGNETIC CORRELATIONS IN MULTI-SITE Sr(Y_{1-x}Yb_x)₂O₄ OXIDES

Batulin R.G.¹, Gabbasov B.F.¹, Gilmutdinov I.F.¹, Kiiamov A.G.¹, Malkin B.Z.¹, Mumdzhi I.E.¹, Nikitin S.I.¹, Petrenko O.A.², <u>Yusupov R.V.¹</u>, Zverev D.G.¹ ¹ Kazan Federal University, Kazan, Russia ² University of Warwick, Coventry, United Kingdom Roman.Yusupov@kpfu.ru

Nowadays, crystalline compounds with the general formula of SrR_2O_4 , where R is a rare earth (RE) ion, attract an attention of the researchers because of quasi-1D crystal structure, magnetic frustration in zig-zag chains of RE ions and substantially different anisotropic magnetic properties of RE ions at four magnetically nonequivalent sites with the C_s point symmetry. Among the peculiar properties of the up-to-date studied compounds, one can mention a coexistence of a long-range antiferromagnetic and a short-range incommensurate magnetic order in $SrEr_2O_4$ and $SrHo_2O_4$ and the absence of the long-range magnetic correlations in $SrDy_2O_4$ down to the lowest temperatures achieved in the experiments.

Another member of this family, $SrYb_2O_4$, undergoes a transition to the non-collinear antiferromagnetic phase at $T_N = 0.9$ K that has been revealed by studies of the inelastic neutron scattering and the heat capacity [1]. These studies, however, didn't provide any information about the electronic structure of Yb³⁺ ions and the nature of interactions which induce the observed magnetic ordering. Some parameters of the magnetic structure should be revised because the values of magnetic moments of the Yb³⁺ ions presented in [1] are not consistent with the measured field dependencies of the magnetization.

We present the results of a systematic investigation of spectral and magnetic properties in the concentration series of $Sr(Y_{1-x}Yb_x)_2O_4$ single crystals with $x = 10^{-4}$, $5 \cdot 10^{-3}$, $5 \cdot 10^{-2}$, 10^{-1} , $2 \cdot 10^{-1}$, $5 \cdot 10^{-1}$, 1. The samples were grown by the optical floating zone technique from the highpurity initial components. Energies of the crystalfield sublevels of the ground ${}^{2}F_{7/2}$ and excited ²F_{5/2} multiplets for the two structurally nonequivalent sites Yb1 and Yb2 were determined by means of the site-selective laser spectroscopy of the strongly diluted ($x = 10^{-4}$) sample. EPR study of the same sample allowed us to characterize the single-ion magnetic anisotropy (principal values and axes of the g-tensors) for the ground states of Yb^{3+} ions at both Yb1 and Yb2 sites.

Fig. 1. Magnetization of the $Sr(Y_{1-x}Yb_x)_2O_4$ series at T = 2 K and $B \parallel c$ (x values along the arrow are 0.005; 0.05; 0.1; 0.2; 0.5; 1).

Crystal-field parameters for Yb³⁺ ions were found from the optimal simultaneous fit of the crystal-field energies and g-tensors for Yb1 and Yb2 sites. These data served as a basis for a description of the magnetization curves in $Sr(Y_{1-x}Yb_x)_2O_4$ compounds (Fig. 1) with higher Yb-concentrations. A set of exchange interaction parameters were found that allowed us to describe the observed suppression of the magnetization with the Yb-concentration increase. Collected data are used to model the magnetic structure in the SrYb₂O₄ single crystal at $T < T_N$.

[1] D.L. Quintero-Castro et al, Phys. Rev. B, 86 (2012) 064203.